File size: 4,206 Bytes
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from __future__ import annotations

import json
import math
from pathlib import Path
from typing import Any

import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
from torch.utils.data import Dataset


class EditDataset(Dataset):
    def __init__(
        self,
        path: str,
        split: str = "train",
        splits: tuple[float, float, float] = (0.9, 0.05, 0.05),
        min_resize_res: int = 256,
        max_resize_res: int = 256,
        crop_res: int = 256,
        flip_prob: float = 0.0,
    ):
        assert split in ("train", "val", "test")
        assert sum(splits) == 1
        self.path = path
        self.min_resize_res = min_resize_res
        self.max_resize_res = max_resize_res
        self.crop_res = crop_res
        self.flip_prob = flip_prob

        with open(Path(self.path, "seeds.json")) as f:
            self.seeds = json.load(f)

        split_0, split_1 = {
            "train": (0.0, splits[0]),
            "val": (splits[0], splits[0] + splits[1]),
            "test": (splits[0] + splits[1], 1.0),
        }[split]

        idx_0 = math.floor(split_0 * len(self.seeds))
        idx_1 = math.floor(split_1 * len(self.seeds))
        self.seeds = self.seeds[idx_0:idx_1]

    def __len__(self) -> int:
        return len(self.seeds)

    def __getitem__(self, i: int) -> dict[str, Any]:
        name, seeds = self.seeds[i]
        propt_dir = Path(self.path, name)
        seed = seeds[torch.randint(0, len(seeds), ()).item()]
        with open(propt_dir.joinpath("prompt.json")) as fp:
            prompt = json.load(fp)["edit"]

        image_0 = Image.open(propt_dir.joinpath(f"{seed}_0.jpg"))
        image_1 = Image.open(propt_dir.joinpath(f"{seed}_1.jpg"))

        reize_res = torch.randint(self.min_resize_res, self.max_resize_res + 1, ()).item()
        image_0 = image_0.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
        image_1 = image_1.resize((reize_res, reize_res), Image.Resampling.LANCZOS)

        image_0 = rearrange(2 * torch.tensor(np.array(image_0)).float() / 255 - 1, "h w c -> c h w")
        image_1 = rearrange(2 * torch.tensor(np.array(image_1)).float() / 255 - 1, "h w c -> c h w")

        crop = torchvision.transforms.RandomCrop(self.crop_res)
        flip = torchvision.transforms.RandomHorizontalFlip(float(self.flip_prob))
        image_0, image_1 = flip(crop(torch.cat((image_0, image_1)))).chunk(2)

        return dict(edited=image_1, edit=dict(c_concat=image_0, c_crossattn=prompt))


class EditDatasetEval(Dataset):
    def __init__(
        self,
        path: str,
        split: str = "train",
        splits: tuple[float, float, float] = (0.9, 0.05, 0.05),
        res: int = 256,
    ):
        assert split in ("train", "val", "test")
        assert sum(splits) == 1
        self.path = path
        self.res = res

        with open(Path(self.path, "seeds.json")) as f:
            self.seeds = json.load(f)

        split_0, split_1 = {
            "train": (0.0, splits[0]),
            "val": (splits[0], splits[0] + splits[1]),
            "test": (splits[0] + splits[1], 1.0),
        }[split]

        idx_0 = math.floor(split_0 * len(self.seeds))
        idx_1 = math.floor(split_1 * len(self.seeds))
        self.seeds = self.seeds[idx_0:idx_1]

    def __len__(self) -> int:
        return len(self.seeds)

    def __getitem__(self, i: int) -> dict[str, Any]:
        name, seeds = self.seeds[i]
        propt_dir = Path(self.path, name)
        seed = seeds[torch.randint(0, len(seeds), ()).item()]
        with open(propt_dir.joinpath("prompt.json")) as fp:
            prompt = json.load(fp)
            edit = prompt["edit"]
            input_prompt = prompt["input"]
            output_prompt = prompt["output"]

        image_0 = Image.open(propt_dir.joinpath(f"{seed}_0.jpg"))

        reize_res = torch.randint(self.res, self.res + 1, ()).item()
        image_0 = image_0.resize((reize_res, reize_res), Image.Resampling.LANCZOS)

        image_0 = rearrange(2 * torch.tensor(np.array(image_0)).float() / 255 - 1, "h w c -> c h w")

        return dict(image_0=image_0, input_prompt=input_prompt, edit=edit, output_prompt=output_prompt)