File size: 9,029 Bytes
1130e24
cf9ad46
1130e24
 
 
 
 
 
 
04f8f8b
1130e24
70be539
1130e24
70be539
af68a82
 
1130e24
853f29a
1130e24
 
 
 
 
 
 
 
 
 
 
82b9aeb
67fd23e
 
 
b2b1d1f
67fd23e
 
 
 
 
 
 
 
 
9e29fa0
69cec82
3424c6f
 
67fd23e
69cec82
1130e24
 
 
 
 
 
 
 
af68a82
 
 
 
 
1130e24
ecdbfcf
70be539
ecdbfcf
2180861
70be539
 
 
 
 
 
 
2180861
70be539
 
 
 
 
 
 
2180861
70be539
1130e24
 
70be539
2180861
1130e24
70be539
 
1130e24
70be539
 
 
 
 
 
 
90fa7ec
 
 
 
82b9aeb
5f6b004
70be539
d1e7332
7d912ec
70be539
 
 
 
 
 
 
 
 
73ee479
853f29a
 
73ee479
 
70be539
 
 
3cc9ea6
82b9aeb
3cc9ea6
a1eb2dd
70be539
703612e
70be539
 
 
 
1130e24
3e91901
 
 
 
 
 
 
 
 
 
 
 
1130e24
af68a82
 
 
 
fb1a253
 
 
af68a82
 
fb1a253
 
 
 
 
 
 
 
 
 
 
 
 
af68a82
fb1a253
 
 
 
853f29a
af68a82
 
 
 
 
882055b
 
 
 
 
 
 
 
 
 
 
 
 
 
0f6a4f6
882055b
 
 
1130e24
af68a82
 
 
882055b
af68a82
 
55b014b
 
af68a82
 
 
 
1130e24
 
 
 
af68a82
 
 
 
 
 
 
 
 
 
 
70be539
8ea1705
 
 
a1dac96
 
8ea1705
a1dac96
cdbd963
8ea1705
 
70be539
90fa7ec
70be539
57caf39
8ea1705
 
 
 
57caf39
8ea1705
2b41a25
2f654f8
3e91901
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
import spaces

import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import torch.nn.functional as F
from huggingface_hub import HfApi
from collections import defaultdict

from label_dicts import (CAP_MEDIA_NUM_DICT, CAP_MEDIA_LABEL_NAMES,
                        CAP_MIN_NUM_DICT, CAP_MIN_LABEL_NAMES,
                        CAP_MIN_MEDIA_NUM_DICT)

from .utils import is_disk_full, release_model

HF_TOKEN = os.environ["hf_read"]

languages = [
    "Multilingual",
]

domains = {
    "media": "media"
}

NUM_TOP_CLASSES = 5
CAP_MEDIA_CODES = list(CAP_MEDIA_NUM_DICT.values())
CAP_MIN_CODES = list(CAP_MIN_NUM_DICT.values())

major_index_to_id = {i: code for i, code in enumerate(CAP_MEDIA_CODES)}
minor_id_to_index = {code: i for i, code in enumerate(CAP_MIN_CODES)}
minor_index_to_id = {i: code for i, code in enumerate(CAP_MIN_CODES)}

major_to_minor_map = defaultdict(list)
for code in CAP_MIN_CODES:
    major_id = int(str(code)[:-2])
    major_to_minor_map[major_id].append(code)
major_to_minor_map = dict(major_to_minor_map)


def normalize_probs(probs: dict) -> dict:
    total = sum(probs.values())
    return {k: v / total for k, v in probs.items()}


def check_huggingface_path(checkpoint_path: str):
    try:
        hf_api = HfApi(token=HF_TOKEN)
        hf_api.model_info(checkpoint_path, token=HF_TOKEN)
        return True
    except:
        return False

def build_huggingface_path(language: str, domain: str, hierarchical: bool):
    if hierarchical:
        return ("poltextlab/xlm-roberta-large-pooled-cap-media", "poltextlab/xlm-roberta-large-pooled-cap-minor-v3")
    else:
        return "poltextlab/xlm-roberta-large-pooled-cap-media-minor"

#@spaces.GPU(duration=30)
def predict(text, major_model_id, minor_model_id, tokenizer_id, HF_TOKEN=None):
    device = torch.device("cpu")

    # Load major and minor models + tokenizer
    major_model = AutoModelForSequenceClassification.from_pretrained(
        major_model_id,
        low_cpu_mem_usage=True,
        device_map="auto",
        offload_folder="offload",
        token=HF_TOKEN
    ).to(device)

    minor_model = AutoModelForSequenceClassification.from_pretrained(
        minor_model_id,
        low_cpu_mem_usage=True,
        device_map="auto",
        offload_folder="offload",
        token=HF_TOKEN
    ).to(device)

    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    # Tokenize input
    inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device)

    # Predict major topic
    major_model.eval()
    with torch.no_grad():
        major_logits = major_model(**inputs).logits
        major_probs = F.softmax(major_logits, dim=-1)
    major_probs_np = major_probs.cpu().numpy().flatten()
    top_major_index = int(np.argmax(major_probs_np))
    top_major_id = major_index_to_id[top_major_index]

    # Default: show major topic predictions
    filtered_probs = {
        i: float(major_probs_np[i])
        for i in np.argsort(major_probs_np)[::-1]
    }
    filtered_probs = normalize_probs(filtered_probs)
        
    output_pred = {
        f"[{major_index_to_id[k]}] {CAP_MEDIA_LABEL_NAMES[major_index_to_id[k]]}": v
        for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
    }

    # If eligible for minor prediction
    if top_major_id in major_to_minor_map:
        valid_minor_ids = major_to_minor_map[top_major_id]
        minor_model.eval()
        with torch.no_grad():
            minor_logits = minor_model(**inputs).logits
            minor_probs = F.softmax(minor_logits, dim=-1)
            
        release_model(major_model, major_model_id)
        release_model(minor_model, minor_model_id)
        
        print(minor_probs) # debug
        # Restrict to valid minor codes
        valid_indices = [minor_id_to_index[mid] for mid in valid_minor_ids if mid in minor_id_to_index]
        filtered_probs = {minor_index_to_id[i]: float(minor_probs[0][i]) for i in valid_indices}
        print(filtered_probs) # debug
        filtered_probs = normalize_probs(filtered_probs)
        print(filtered_probs) # debug
        
        output_pred = {
            f"[{top_major_id}] {CAP_MEDIA_LABEL_NAMES[top_major_id]} [{k}] {CAP_MIN_LABEL_NAMES[k]}": v
            for k, v in sorted(filtered_probs.items(), key=lambda item: item[1], reverse=True)
        }

    output_info = f'<p style="text-align: center; display: block">Prediction used <a href="https://huggingface.co/{major_model_id}">{major_model_id}</a> and <a href="https://huggingface.co/{minor_model_id}">{minor_model_id}</a>.</p>'

    interpretation_info = """
    ## How to Interpret These Values (Hierarchical Classification)

    This method returns either:

    - A list of **major (media) topic confidences**, or
    - A list of **minor topic confidences**.

    In the case of minor topics, the values are the confidences for minor topics **within a given major topic**, and they are **normalized to sum to 1**.
    """

    return interpretation_info, output_pred, output_info


def predict_flat(text, model_id, tokenizer_id, HF_TOKEN=None):
    device = torch.device("cpu")

    # Load JIT-traced model
    jit_model_path = f"/data/jit_models/{model_id.replace('/', '_')}.pt"
    model = torch.jit.load(jit_model_path).to(device)
    model.eval()

    # Load tokenizer (still regular HF)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    # Tokenize input
    inputs = tokenizer(
        text,
        max_length=256,
        truncation=True,
        padding="do_not_pad",
        return_tensors="pt"
    )
    inputs = {k: v.to(device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model(inputs["input_ids"], inputs["attention_mask"])
        print(output) # debug
        logits = output["logits"]
        
    release_model(model, model_id)

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    top_indices = np.argsort(probs)[::-1][:10]
    
    CAP_MIN_MEDIA_LABEL_NAMES = CAP_MEDIA_LABEL_NAMES | CAP_MIN_LABEL_NAMES 
    
    output_pred = {}
    for i in top_indices:
        code = CAP_MIN_MEDIA_NUM_DICT[i]
        prob = probs[i]
        
        if code in CAP_MEDIA_LABEL_NAMES:
            # Media (major) topic
            label = CAP_MEDIA_LABEL_NAMES[code]
            display = f"[{code}] {label}"
        else:
            # Minor topic
            major_code = code // 100
            major_label = CAP_MEDIA_LABEL_NAMES[major_code]
            minor_label = CAP_MIN_LABEL_NAMES[code]
            display = f"[{major_code}] {major_label} [{code}] {minor_label}"
        
        output_pred[display] = prob
    
    interpretation_info = """
    ## How to Interpret These Values (Flat Classification)

    This method returns predictions made by a single model. Both media codes and minor topics may appear in the output list. **Only the top 10 most confident labels are displayed**.
    """
    
    output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
    
    return interpretation_info, output_pred, output_info


def predict_cap(tmp, method, text, language, domain):
    if is_disk_full():
        os.system('rm -rf /data/models*')
        os.system('rm -r ~/.cache/huggingface/hub')
        
    domain = domains[domain]
    
    if method == "Hierarchical Classification":
        major_model_id, minor_model_id = build_huggingface_path(language, domain, True)
        tokenizer_id = "xlm-roberta-large"
        return predict(text, major_model_id, minor_model_id, tokenizer_id)
        
    else:
        model_id = build_huggingface_path(language, domain, False)
        tokenizer_id = "xlm-roberta-large"
        return predict_flat(text, model_id, tokenizer_id)   

description = """
You can choose between two approaches for making predictions:

**1. Hierarchical Classification**  
First, the model predicts a **major topic**. Then, a second model selects the most probable **subtopic** from within that major topic's category.

**2. Flat Classification (single model)**  
A single model directly predicts the most relevant label from all available classes (both media and minor topics).
"""

demo = gr.Interface(
    title="CAP Media/Minor Topics Babel Demo",
    fn=predict_cap,
    inputs=[gr.Markdown(description),
            gr.Radio(
                choices=["Hierarchical Classification", "Flat Classification"],
                label="Prediction Mode",
                value="Hierarchical Classification"
            ),
            gr.Textbox(lines=6, label="Input"),
            gr.Dropdown(languages, label="Language", value=languages[0]),
            gr.Dropdown(domains.keys(), label="Domain", value=list(domains.keys())[0])],
    outputs=[gr.Markdown(), gr.Label(label="Output"), gr.Markdown()])