Spaces:
Runtime error
Runtime error
File size: 8,243 Bytes
eceff29 dc67c78 130dfd8 eceff29 dc67c78 c706f5e 32119e0 725b13f 1ace546 389ca88 130dfd8 2a4df2c 1ace546 32119e0 1ace546 32119e0 5ce4dc5 32119e0 1ace546 32119e0 5ce4dc5 130dfd8 32119e0 1ace546 32119e0 1ace546 32119e0 6f26738 725b13f 32119e0 1ace546 32119e0 1ace546 32119e0 6f26738 32119e0 1ace546 32119e0 c5f746c 32119e0 1ace546 32119e0 1ace546 fa0430c 1ace546 130dfd8 5ce4dc5 130dfd8 5ce4dc5 130dfd8 5ce4dc5 130dfd8 1ace546 32119e0 5ce4dc5 32119e0 5ce4dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import openai
import regex as re
from twitterscraper import TwitterScraper
from datetime import date
class TextClassifier:
def __init__(self, model_name="text-davinci-002", from_date='2022-01-01', to_date=str(date.today()),
user_name='jimmieakesson',
num_tweets=20):
"""
Initializes the TextClassifier.
:param model_name: name of the model from openai.
:param from_date: string of the format 'YYYY-MM-DD'.
:param to_date: string of the format 'YYYY-MM-DD'.
:param num_tweets: integer value of the maximum number of tweets to be scraped.
"""
self.model_name = model_name
self.from_date = from_date
self.to_date = to_date
self.num_tweets = num_tweets
self.user_name = user_name
self.ts = TwitterScraper.TwitterScraper(from_date, to_date, num_tweets)
self.df = self.ts.scrape_by_user(user_name)
# self.api_key = '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'
openai.api_key = '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'
def scrape_tweets(self):
"""
Scrapes tweets from the given date range.
"""
self.ts.scrape_tweets()
@staticmethod
def cleanup_sentiment_results(classification_unclean):
"""
Cleans up the results of the sentiment classification.
:param classification_unclean: string of the classification result.
:return: cleaned up string.
"""
classification_clean = classification_unclean.replace('\n\n', "")
classification_clean = classification_clean.replace('\n', "")
if classification_clean.startswith(" "):
classification_clean = classification_clean.replace(" ", "")
return classification_clean
return response.choices[0]['text']
def classify_sentiment(self, text: str):
"""
Classifies the sentiment of a text.
"""
assert isinstance(text, str)
prompt_string = "Classify one sentiment for this tweet:\n \""
prompt_string += text
prompt_string += "\" \nFor example:\nSupport,\nOpposition,\nCriticism,\nPraise,\nDisagreement," \
"\nAgreement,\nSkepticism,\nAdmiration,\nAnecdotes,\nJokes,\nMemes,\nSarcasm,\nSatire," \
"\nQuestions,\nStatements,\nOpinions,\nPredictions.\nSENTIMENT="
response = openai.Completion.create(
model=self.model_name,
prompt=prompt_string,
temperature=0.0,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
logprobs=5
)
classification_unclean = response.choices[0]['text']
classification_clean = self.cleanup_sentiment_results(classification_unclean)
return classification_clean.lower()
def classify_sentiment_of_tweets(self):
"""
Classifies the sentiment of a user's tweets.
"""
df_sentiment = self.df.copy()
df_sentiment['sentiment'] = df_sentiment['tweet'].apply(self.classify_sentiment)
self.df = df_sentiment
return self.df
def analyze_sentiment(self, text: str, sentiment: str):
# TODO: fix prompt before running this method
"""
Analyzes the sentiment of a text using OpenAI.
:param text: string of the tweet text.
:param sentiment:
:return:
"""
# assert 1 == 2, "Måste fixa prompt innan denna metod körs"
prompt_string = "Who is the TARGET of this "
prompt_string += sentiment
prompt_string += " TWEET?\\nTWEET=\""
prompt_string += text
prompt_string += "\"\\n.TARGET should consist of less than 5 words.\\nTARGET="
response = openai.Completion.create(
model=self.model_name,
prompt=prompt_string,
temperature=0,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
analyzed_sentiment = response.choices[0]['text']
# Remove spaces at the start/end of the response
if analyzed_sentiment.startswith(' '):
analyzed_sentiment = analyzed_sentiment[1:]
if analyzed_sentiment.endswith(' '):
analyzed_sentiment = analyzed_sentiment[:-1]
# Sometimes GPT-3 gives faulty results, so a simple filter is introduced
# If the prediction is bad
# -> set target value to N/A (not applicable)
if len(analyzed_sentiment) > 50:
analyzed_sentiment = "N/A"
# An attempt to merge target responses that should be the same
analyzed_sentiment = re.sub("\(", "", analyzed_sentiment)
analyzed_sentiment = re.sub("\)", "", analyzed_sentiment)
s_list = ["s", "the swedish social democratic party"]
m_list = ["m", "the swedish moderate party", "the moderate party"]
mp_list = ["mp", "the swedish green party"]
if analyzed_sentiment.lower() == "v":
analyzed_sentiment = "Vänsterpartiet"
elif analyzed_sentiment.lower() == "mp":
analyzed_sentiment = "Miljöpartiet"
elif analyzed_sentiment.lower() in s_list:
analyzed_sentiment = "Socialdemokraterna"
elif analyzed_sentiment.lower() == "c":
analyzed_sentiment = "Centerpartiet"
elif analyzed_sentiment.lower() == "l":
analyzed_sentiment = "Liberalerna"
elif analyzed_sentiment.lower() == "kd":
analyzed_sentiment = "Kristdemokraterna"
elif analyzed_sentiment.lower() in m_list:
analyzed_sentiment = "Moderaterna"
elif analyzed_sentiment.lower() == "sd":
analyzed_sentiment = "Sverigedemokraterna"
elif analyzed_sentiment.lower() == "the swedish government":
analyzed_sentiment = "Regeringen"
return analyzed_sentiment
def analyze_sentiment_of_tweets(self):
"""
Analyzes the sentiment of a user's tweets.
"""
# check if 'sentiment' column exists, raise exception if not
assert 'sentiment' in self.df.columns, \
"'sentiment' column does not exist. Please run classify_sentiment_of_tweets first."
df_sentiment = self.df.copy()
df_sentiment['target'] = df_sentiment.apply(lambda row: self.analyze_sentiment(row['tweet'], row['sentiment']),
axis=1)
self.df = df_sentiment
return self.df
def classify_topic(self, text: str):
"""
Classifies the topics of a text.
:param text: string of the tweet text.
"""
assert isinstance(text, str)
prompt_string = "Classify one topic for this tweet:\n \""
prompt_string += text
prompt_string += "\" \nFor example:\nEconomy,\nEnvironment,\nHealth,\nPolitics,\nScience,\nSports,\nTechnology," \
"\nTransportation,\nWorld.\nTOPIC="
response = openai.Completion.create(
model=self.model_name,
prompt=prompt_string,
temperature=0,
max_tokens=892,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
classification_unclean = response.choices[0]['text']
classification_clean = self.cleanup_topic_results(classification_unclean)
return classification_clean.lower()
def classify_topics_of_tweets(self):
"""
Classifies the topics of a user's tweets.
"""
df_topic = self.df
df_topic['topic'] = df_topic['tweet'].apply(self.classify_topic)
return df_topic
def __repr__(self):
return "TwitterScraper(from_date={}, to_date={}, num_tweets={})".format(self.from_date, self.to_date,
self.num_tweets)
def cleanup_topic_results(prediction_dict, text):
new_item = text.replace("\n", " ")
new_item = new_item.replace(" ", " ")
return new_item
if __name__ == "__main__":
|