File size: 4,010 Bytes
51e2f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
'''

SCNet - great paper, great implementation

https://arxiv.org/pdf/2401.13276.pdf

https://github.com/amanteur/SCNet-PyTorch

'''

from typing import List, Tuple, Union

import torch


def create_intervals(

    splits: List[Union[float, int]]

) -> List[Union[Tuple[float, float], Tuple[int, int]]]:
    """

    Create intervals based on splits provided.



    Args:

    - splits (List[Union[float, int]]): List of floats or integers representing splits.



    Returns:

    - List[Union[Tuple[float, float], Tuple[int, int]]]: List of tuples representing intervals.

    """
    start = 0
    return [(start, start := start + split) for split in splits]


def get_conv_output_shape(

    input_shape: int,

    kernel_size: int = 1,

    padding: int = 0,

    dilation: int = 1,

    stride: int = 1,

) -> int:
    """

    Compute the output shape of a convolutional layer.



    Args:

    - input_shape (int): Input shape.

    - kernel_size (int, optional): Kernel size of the convolution. Default is 1.

    - padding (int, optional): Padding size. Default is 0.

    - dilation (int, optional): Dilation factor. Default is 1.

    - stride (int, optional): Stride value. Default is 1.



    Returns:

    - int: Output shape.

    """
    return int(
        (input_shape + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1
    )


def get_convtranspose_output_padding(

    input_shape: int,

    output_shape: int,

    kernel_size: int = 1,

    padding: int = 0,

    dilation: int = 1,

    stride: int = 1,

) -> int:
    """

    Compute the output padding for a convolution transpose operation.



    Args:

    - input_shape (int): Input shape.

    - output_shape (int): Desired output shape.

    - kernel_size (int, optional): Kernel size of the convolution. Default is 1.

    - padding (int, optional): Padding size. Default is 0.

    - dilation (int, optional): Dilation factor. Default is 1.

    - stride (int, optional): Stride value. Default is 1.



    Returns:

    - int: Output padding.

    """
    return (
        output_shape
        - (input_shape - 1) * stride
        + 2 * padding
        - dilation * (kernel_size - 1)
        - 1
    )


def compute_sd_layer_shapes(

    input_shape: int,

    bandsplit_ratios: List[float],

    downsample_strides: List[int],

    n_layers: int,

) -> Tuple[List[List[int]], List[List[Tuple[int, int]]]]:
    """

    Compute the shapes for the subband layers.



    Args:

    - input_shape (int): Input shape.

    - bandsplit_ratios (List[float]): Ratios for splitting the frequency bands.

    - downsample_strides (List[int]): Strides for downsampling in each layer.

    - n_layers (int): Number of layers.



    Returns:

    - Tuple[List[List[int]], List[List[Tuple[int, int]]]]: Tuple containing subband shapes and convolution shapes.

    """
    bandsplit_shapes_list = []
    conv2d_shapes_list = []
    for _ in range(n_layers):
        bandsplit_intervals = create_intervals(bandsplit_ratios)
        bandsplit_shapes = [
            int(right * input_shape) - int(left * input_shape)
            for left, right in bandsplit_intervals
        ]
        conv2d_shapes = [
            get_conv_output_shape(bs, stride=ds)
            for bs, ds in zip(bandsplit_shapes, downsample_strides)
        ]
        input_shape = sum(conv2d_shapes)
        bandsplit_shapes_list.append(bandsplit_shapes)
        conv2d_shapes_list.append(create_intervals(conv2d_shapes))

    return bandsplit_shapes_list, conv2d_shapes_list


def compute_gcr(subband_shapes: List[List[int]]) -> float:
    """

    Compute the global compression ratio.



    Args:

    - subband_shapes (List[List[int]]): List of subband shapes.



    Returns:

    - float: Global compression ratio.

    """
    t = torch.Tensor(subband_shapes)
    gcr = torch.stack(
        [(1 - t[i + 1] / t[i]).mean() for i in range(0, len(t) - 1)]
    ).mean()
    return float(gcr)