Spaces:
Running
Running
File size: 60,247 Bytes
ddd128b d6c231c ddd128b 17c5e17 d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b 3de2787 ddd128b 3de2787 ddd128b d6c231c ddd128b 3de2787 ddd128b 3de2787 ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b d6c231c 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b d6c231c ddd128b d6c231c ddd128b 3de2787 ddd128b 3de2787 ddd128b 3de2787 ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b d6c231c ddd128b 3de2787 ddd128b d6c231c ddd128b d6c231c ddd128b 17c5e17 ddd128b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 |
#!/usr/bin/env python3
"""
Twitter Content Analyzer
A comprehensive Twitter data collection and analysis tool with automated scheduling capabilities.
"""
import os
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any
from collections import Counter
import streamlit as st
import pandas as pd
import plotly.express as px
import pytz
from pymongo import MongoClient
import google.generativeai as genai
from apify_client import ApifyClient
from dotenv import load_dotenv
# =============================================================================
# CONSTANTS
# =============================================================================
DEFAULT_USERNAME = "narendramodi"
DEFAULT_DAYS_BACK = 7
IST_TIMEZONE = 'Asia/Kolkata'
UTC_TIMEZONE = 'UTC'
# Twitter API date format
TWITTER_DATE_FORMAT = "%a %b %d %H:%M:%S %z %Y"
# MongoDB collection names
TWEETS_COLLECTION = "tweets"
SCHEDULER_USERS_COLLECTION = "scheduler_users"
# Streamlit page config
PAGE_CONFIG = {
"page_title": "Twitter Scraper & Analyzer",
"page_icon": "π¦",
"layout": "wide",
"initial_sidebar_state": "expanded"
}
# =============================================================================
# LOGGING CONFIGURATION
# =============================================================================
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def convert_to_ist(utc_dt: datetime) -> datetime:
"""Convert UTC datetime to Indian Standard Time."""
if utc_dt.tzinfo is None:
utc_dt = pytz.utc.localize(utc_dt)
return utc_dt.astimezone(pytz.timezone(IST_TIMEZONE))
def safe_get_nested(data: Dict, keys: List[str], default=None):
"""Safely get nested dictionary values."""
for key in keys:
if isinstance(data, dict) and key in data:
data = data[key]
else:
return default
return data
def format_large_number(num: int) -> str:
"""Format large numbers with commas."""
return f"{num:,}" if num > 0 else "N/A"
# =============================================================================
# CONFIGURATION MANAGEMENT
# =============================================================================
class AppConfig:
"""Centralized configuration management."""
def __init__(self, env_path: str = ".env.local"):
load_dotenv(dotenv_path=env_path)
self._validate_config()
@property
def mongodb_uri(self) -> Optional[str]:
return os.getenv("MONGODB_URI")
@property
def apify_api_key(self) -> Optional[str]:
return os.getenv("APIFY_API_KEY")
@property
def gemini_api_key(self) -> Optional[str]:
return os.getenv("GEMINI_API_KEY")
def _validate_config(self) -> None:
"""Validate essential configuration."""
if not self.apify_api_key:
raise ValueError("APIFY_API_KEY is required but not found in environment variables")
# =============================================================================
# DATABASE MANAGEMENT
# =============================================================================
class DatabaseManager:
"""Handles all MongoDB operations."""
def __init__(self, uri: Optional[str]):
self.client = None
self.db = None
self.is_connected = False
self._connect(uri)
def _connect(self, uri: Optional[str]) -> None:
"""Establish MongoDB connection."""
if not uri:
logger.warning("No MongoDB URI provided. Running in offline mode.")
self._setup_dummy_collections()
return
try:
self.client = MongoClient(uri, serverSelectionTimeoutMS=5000)
self.client.admin.command('ping')
self.db = self.client["DataCollector"]
self.tweets_collection = self.db[TWEETS_COLLECTION]
self.scheduler_users_collection = self.db[SCHEDULER_USERS_COLLECTION]
self.is_connected = True
logger.info("β
MongoDB connected successfully")
except Exception as e:
logger.error(f"β οΈ MongoDB connection failed: {e}")
logger.info("π Running in offline mode - data will not be stored")
self._setup_dummy_collections()
def _setup_dummy_collections(self) -> None:
"""Setup dummy collections for offline mode."""
class DummyCollection:
def update_one(self, *args, **kwargs): pass
def find(self, *args, **kwargs): return []
def find_one(self, *args, **kwargs): return None
def insert_one(self, *args, **kwargs): pass
self.tweets_collection = DummyCollection()
self.scheduler_users_collection = DummyCollection()
self.is_connected = False
# =============================================================================
# API SERVICES
# =============================================================================
class ApifyService:
"""Handles Apify API interactions for Twitter data collection."""
ACTOR_ID = "CJdippxWmn9uRfooo"
def __init__(self, api_key: str):
self.client = ApifyClient(api_key)
def _run_actor(self, run_input: Dict[str, Any]) -> Tuple[List[Dict], str]:
"""Execute Apify actor and retrieve dataset."""
try:
run = self.client.actor(self.ACTOR_ID).call(run_input=run_input)
dataset_id = run["defaultDatasetId"]
data = list(self.client.dataset(dataset_id).iterate_items())
return data, dataset_id
except Exception as e:
logger.error(f"Apify actor execution failed: {e}")
raise
def fetch_account_tweets(self, username: str, since: str, until: str) -> Tuple[List[Dict], str]:
"""Fetch tweets posted by a specific account."""
# Handle both simple date (YYYY-MM-DD) and full timestamp (YYYY-MM-DD_HH:MM:SS) formats
since_formatted = f"{since}_UTC" if "_" in since else f"{since}_00:00:00_UTC"
until_formatted = f"{until}_UTC" if "_" in until else f"{until}_23:59:59_UTC"
run_input = {
"from": username.strip(),
"since": since_formatted,
"until": until_formatted,
"queryType": "Latest",
"include:nativeretweets": True,
}
with st.spinner(f"Fetching tweets for @{username} from {since} to {until}..."):
data, dataset_id = self._run_actor(run_input)
st.info(f"π Query Details: from:{username} | Raw results: {len(data)} tweets")
return data, dataset_id
def fetch_account_comments(self, username: str, since: str, until: str) -> Tuple[List[Dict], str]:
"""Fetch comments/replies directed to a specific account."""
# Handle both simple date (YYYY-MM-DD) and full timestamp (YYYY-MM-DD_HH:MM:SS) formats
since_formatted = f"{since}_UTC" if "_" in since else f"{since}_00:00:00_UTC"
until_formatted = f"{until}_UTC" if "_" in until else f"{until}_23:59:59_UTC"
run_input = {
"to": username.strip(),
"since": since_formatted,
"until": until_formatted,
"queryType": "Latest",
}
with st.spinner(f"Fetching comments for @{username} from {since} to {until}..."):
data, dataset_id = self._run_actor(run_input)
st.info(f"π Query Details: to:@{username} | Raw results: {len(data)} comments")
return data, dataset_id
class GeminiService:
"""Handles Google Generative AI interactions."""
def __init__(self, api_key: str):
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel('gemini-1.5-flash')
def generate_analysis(self, tweets_df: pd.DataFrame, context: str) -> str:
"""Generate AI-powered analysis of tweets."""
if tweets_df.empty:
return "No tweets provided for analysis."
with st.spinner("Generating AI summary with Gemini..."):
try:
tweets_text = self._format_tweets_for_analysis(tweets_df)
prompt = self._create_analysis_prompt(context, tweets_text)
response = self.model.generate_content(prompt)
return response.text
except Exception as e:
logger.error(f"Gemini analysis failed: {e}")
return f"Error generating summary: {str(e)}"
def _format_tweets_for_analysis(self, tweets_df: pd.DataFrame) -> str:
"""Format tweets for AI analysis."""
return "\n\n".join([
f"{i}. @{row.Username}: {row.Text} (Likes: {row.Likes}, Retweets: {row.Retweets})"
for i, row in enumerate(tweets_df.itertuples(), 1)
])
def _create_analysis_prompt(self, context: str, tweets_text: str) -> str:
"""Create analysis prompt for Gemini."""
return f"""
{context}
Here are the tweets to analyze:
{tweets_text}
Please provide a comprehensive analysis covering:
1. **Main Themes & Topics:** What are the key subjects of discussion?
2. **Overall Sentiment:** What is the general tone (positive, negative, neutral)?
3. **Key Insights & Patterns:** Are there any notable trends or surprising findings?
4. **Top Recommendations:** Provide 5 actionable suggestions for the brand/party to improve their strategy based on this feedback.
Format the response clearly using Markdown.
"""
# =============================================================================
# DATA PROCESSING
# =============================================================================
class TweetDataProcessor:
"""Processes raw tweet data into structured format."""
def process_tweets(self, raw_data: List[Dict[str, Any]], target_username: str = None) -> Tuple[pd.DataFrame, Dict[str, Any]]:
"""Transform raw API data into clean DataFrame and metrics."""
processed_data = []
hashtags_counter = Counter()
mentions_counter = Counter()
all_author_data = []
skipped_count = 0
error_count = 0
for item in raw_data:
try:
processed_tweet = self._process_single_tweet(item, hashtags_counter, mentions_counter, all_author_data, target_username)
if processed_tweet:
processed_data.append(processed_tweet)
else:
skipped_count += 1
except Exception as e:
error_count += 1
# Only log individual errors in debug mode
if st.session_state.get('debug_mode', False):
logger.warning(f"Skipping tweet due to processing error: {e}")
st.warning(f"Skipping a tweet due to processing error: {e}")
# Show summary of skipped items only if significant
if skipped_count > 0 and st.session_state.get('debug_mode', False):
st.info(f"βΉοΈ Skipped {skipped_count} items (likely mock/invalid data)")
if error_count > 0:
st.warning(f"β οΈ {error_count} items had processing errors")
# Extract best account details
account_details = self._extract_best_account_details(all_author_data, target_username)
# Create DataFrame and calculate engagement metrics from tweet data
df = pd.DataFrame(processed_data)
engagement_metrics = self._calculate_engagement_metrics(df, target_username)
# Add engagement metrics to account_details
if account_details:
account_details.update(engagement_metrics)
metrics = {
"top_hashtags": hashtags_counter.most_common(5),
"top_mentions": mentions_counter.most_common(5),
"account_details": account_details
}
return df, metrics
def _calculate_engagement_metrics(self, df: pd.DataFrame, target_username: str = None) -> Dict:
"""Calculate comprehensive engagement metrics from tweet data."""
if df.empty:
return self._get_empty_metrics()
# Filter to only tweets from the target user if specified
if target_username:
user_tweets = df[df['Username'].str.lower() == target_username.lower()]
else:
user_tweets = df
if user_tweets.empty:
return self._get_empty_metrics()
# Basic engagement totals
likes_count = user_tweets['Likes'].sum() if 'Likes' in user_tweets.columns else 0
views_count = user_tweets['Views'].sum() if 'Views' in user_tweets.columns else 0
reply_count = user_tweets['Replies'].sum() if 'Replies' in user_tweets.columns else 0
repost_count = user_tweets['Retweets'].sum() if 'Retweets' in user_tweets.columns else 0
tweet_count = len(user_tweets)
# Content quality metrics
avg_likes_per_tweet = likes_count / tweet_count if tweet_count > 0 else 0
avg_views_per_tweet = views_count / tweet_count if tweet_count > 0 else 0
avg_engagement_rate = ((likes_count + repost_count) / views_count * 100) if views_count > 0 else 0
# Content length analysis
if 'Text' in user_tweets.columns:
text_lengths = user_tweets['Text'].astype(str).str.len()
avg_tweet_length = text_lengths.mean()
longest_tweet_length = text_lengths.max()
shortest_tweet_length = text_lengths.min()
else:
avg_tweet_length = longest_tweet_length = shortest_tweet_length = 0
# Media usage metrics
if 'Has_Media' in user_tweets.columns:
tweets_with_media = user_tweets['Has_Media'].sum()
media_usage_percentage = (tweets_with_media / tweet_count * 100) if tweet_count > 0 else 0
# Media effectiveness
media_tweets = user_tweets[user_tweets['Has_Media'] == True]
no_media_tweets = user_tweets[user_tweets['Has_Media'] == False]
avg_likes_with_media = media_tweets['Likes'].mean() if len(media_tweets) > 0 else 0
avg_likes_without_media = no_media_tweets['Likes'].mean() if len(no_media_tweets) > 0 else 0
else:
tweets_with_media = media_usage_percentage = 0
avg_likes_with_media = avg_likes_without_media = 0
# Hashtag and mention analysis
if 'Hashtags' in user_tweets.columns:
# Count hashtags from the Hashtags field (comma-separated string)
hashtag_counts = user_tweets['Hashtags'].astype(str).apply(lambda x: len([h.strip() for h in x.split(',') if h.strip()]))
total_hashtags_used = hashtag_counts.sum()
avg_hashtags_per_tweet = hashtag_counts.mean()
tweets_with_hashtags_percentage = ((hashtag_counts > 0).sum() / tweet_count * 100) if tweet_count > 0 else 0
elif 'Hashtag_Count' in user_tweets.columns:
# Fallback to Hashtag_Count if available
total_hashtags_used = user_tweets['Hashtag_Count'].sum()
avg_hashtags_per_tweet = user_tweets['Hashtag_Count'].mean()
tweets_with_hashtags_percentage = ((user_tweets['Hashtag_Count'] > 0).sum() / tweet_count * 100) if tweet_count > 0 else 0
else:
total_hashtags_used = avg_hashtags_per_tweet = tweets_with_hashtags_percentage = 0
if 'Mentions' in user_tweets.columns:
# Count mentions from the Mentions field (comma-separated string)
mention_counts = user_tweets['Mentions'].astype(str).apply(lambda x: len([m.strip() for m in x.split(',') if m.strip()]))
total_mentions_used = mention_counts.sum()
avg_mentions_per_tweet = mention_counts.mean()
elif 'Mention_Count' in user_tweets.columns:
# Fallback to Mention_Count if available
total_mentions_used = user_tweets['Mention_Count'].sum()
avg_mentions_per_tweet = user_tweets['Mention_Count'].mean()
else:
total_mentions_used = avg_mentions_per_tweet = 0
# Timing and activity patterns
if 'Hour' in user_tweets.columns:
most_active_hour = user_tweets['Hour'].mode().values[0] if len(user_tweets['Hour'].mode()) > 0 else 0
hourly_distribution = user_tweets['Hour'].value_counts().head(3).to_dict()
else:
most_active_hour = 0
hourly_distribution = {}
if 'Day_of_Week' in user_tweets.columns:
most_active_day = user_tweets['Day_of_Week'].mode().values[0] if len(user_tweets['Day_of_Week'].mode()) > 0 else "Unknown"
else:
most_active_day = "Unknown"
# Performance metrics
if 'Likes' in user_tweets.columns and not user_tweets.empty:
highest_likes = user_tweets['Likes'].max()
top_tweet_idx = user_tweets['Likes'].idxmax()
top_tweet_text = user_tweets.loc[top_tweet_idx, 'Text'][:100] + "..." if 'Text' in user_tweets.columns else ""
top_tweet_url = user_tweets.loc[top_tweet_idx, 'URL'] if 'URL' in user_tweets.columns else ""
# Viral content (top 10% threshold)
viral_threshold = user_tweets['Likes'].quantile(0.9)
viral_tweets_count = (user_tweets['Likes'] > viral_threshold).sum()
viral_content_percentage = (viral_tweets_count / tweet_count * 100) if tweet_count > 0 else 0
else:
highest_likes = viral_tweets_count = viral_content_percentage = 0
top_tweet_text = top_tweet_url = ""
# Audience engagement ratios
like_to_view_ratio = (likes_count / views_count * 100) if views_count > 0 else 0
retweet_to_like_ratio = (repost_count / likes_count * 100) if likes_count > 0 else 0
reply_to_like_ratio = (reply_count / likes_count * 100) if likes_count > 0 else 0
# Engagement score (weighted: likes=1, retweets=2, replies=3)
total_engagement = likes_count + repost_count + reply_count
engagement_score = (likes_count * 1 + repost_count * 2 + reply_count * 3) / tweet_count if tweet_count > 0 else 0
return {
# Basic metrics
"likes_count": int(likes_count),
"views_count": int(views_count),
"reply_count": int(reply_count),
"repost_count": int(repost_count),
# Content quality metrics
"avg_likes_per_tweet": round(avg_likes_per_tweet, 1),
"avg_views_per_tweet": round(avg_views_per_tweet, 1),
"avg_engagement_rate": round(avg_engagement_rate, 2),
"avg_tweet_length": round(avg_tweet_length, 1),
"longest_tweet_length": int(longest_tweet_length),
"shortest_tweet_length": int(shortest_tweet_length),
# Media usage metrics
"tweets_with_media_count": int(tweets_with_media),
"media_usage_percentage": round(media_usage_percentage, 1),
"avg_likes_with_media": round(avg_likes_with_media, 1),
"avg_likes_without_media": round(avg_likes_without_media, 1),
# Hashtag and mention metrics
"total_hashtags_used": int(total_hashtags_used),
"avg_hashtags_per_tweet": round(avg_hashtags_per_tweet, 1),
"tweets_with_hashtags_percentage": round(tweets_with_hashtags_percentage, 1),
"total_mentions_used": int(total_mentions_used),
"avg_mentions_per_tweet": round(avg_mentions_per_tweet, 1),
# Activity patterns
"most_active_hour": int(most_active_hour),
"most_active_day": str(most_active_day),
"top_activity_hours": list(hourly_distribution.keys())[:3],
# Performance metrics
"highest_likes": int(highest_likes),
"top_tweet_text": str(top_tweet_text),
"top_tweet_url": str(top_tweet_url),
"viral_tweets_count": int(viral_tweets_count),
"viral_content_percentage": round(viral_content_percentage, 1),
# Engagement ratios
"like_to_view_ratio": round(like_to_view_ratio, 2),
"retweet_to_like_ratio": round(retweet_to_like_ratio, 2),
"reply_to_like_ratio": round(reply_to_like_ratio, 2),
"engagement_score": round(engagement_score, 1),
"total_engagement": int(total_engagement),
}
def _get_empty_metrics(self) -> Dict:
"""Return empty metrics structure."""
return {
# Basic metrics
"likes_count": 0, "views_count": 0, "reply_count": 0, "repost_count": 0,
# Content quality metrics
"avg_likes_per_tweet": 0, "avg_views_per_tweet": 0, "avg_engagement_rate": 0,
"avg_tweet_length": 0, "longest_tweet_length": 0, "shortest_tweet_length": 0,
# Media usage metrics
"tweets_with_media_count": 0, "media_usage_percentage": 0,
"avg_likes_with_media": 0, "avg_likes_without_media": 0,
# Hashtag and mention metrics
"total_hashtags_used": 0, "avg_hashtags_per_tweet": 0, "tweets_with_hashtags_percentage": 0,
"total_mentions_used": 0, "avg_mentions_per_tweet": 0,
# Activity patterns
"most_active_hour": 0, "most_active_day": "Unknown", "top_activity_hours": [],
# Performance metrics
"highest_likes": 0, "top_tweet_text": "", "top_tweet_url": "",
"viral_tweets_count": 0, "viral_content_percentage": 0,
# Engagement ratios
"like_to_view_ratio": 0, "retweet_to_like_ratio": 0, "reply_to_like_ratio": 0,
"engagement_score": 0, "total_engagement": 0,
}
def _is_mock_tweet(self, item: Dict) -> bool:
"""Detect if a tweet is mock/invalid data that should be ignored."""
# Check for missing essential fields that real tweets should have
essential_fields = ['createdAt', 'text', 'author']
missing_fields = sum(1 for field in essential_fields if not item.get(field))
# If missing multiple essential fields, likely mock data
if missing_fields >= 2:
return True
# Check for empty or placeholder text
text = item.get("text", "").strip()
if not text or text.lower() in ["", "null", "undefined", "test", "placeholder"]:
return True
# Check for missing or empty author data
author = item.get("author", {})
if not author or not author.get("userName", "").strip():
return True
# Check for obviously fake/test usernames
username = author.get("userName", "").lower()
test_patterns = ["test", "mock", "fake", "placeholder", "example"]
if any(pattern in username for pattern in test_patterns):
return True
return False
def _process_single_tweet(self, item: Dict, hashtags_counter: Counter,
mentions_counter: Counter, all_author_data: List, target_username: str = None) -> Optional[Dict]:
"""Process a single tweet item."""
# Extract author data
author = item.get("author", {})
if author:
# Only collect author data from the target user if target_username is specified
# This prevents random accounts from being saved in replies data
if target_username:
author_username = author.get("userName", "").lower()
if author_username == target_username.lower():
all_author_data.append(author)
else:
all_author_data.append(author)
# Check if this is a mock/invalid tweet (has minimal or no real data)
is_mock_tweet = self._is_mock_tweet(item)
# Validate date information
created_at = item.get("createdAt", "")
if not created_at:
# Only show warning for real tweets missing dates, and only in debug mode
if not is_mock_tweet and st.session_state.get('debug_mode', False):
st.warning("Skipping a tweet due to missing date information")
return None
# Parse date
try:
date_obj_utc = datetime.strptime(created_at, TWITTER_DATE_FORMAT)
date_obj_ist = convert_to_ist(date_obj_utc)
except ValueError as e:
# Only log/warn for real tweets with invalid dates
if not is_mock_tweet:
if st.session_state.get('debug_mode', False):
st.warning(f"Skipping tweet due to invalid date format: {created_at}")
logger.warning(f"Invalid date format: {created_at}")
return None
# Extract text and analyze
text = item.get("text", "")
hashtags = [word.strip("#") for word in text.split() if word.startswith('#')]
mentions = [word.strip("@") for word in text.split() if word.startswith('@')]
# Update counters
hashtags_counter.update(hashtags)
mentions_counter.update(mentions)
return {
"Date": date_obj_ist.strftime("%Y-%m-%d %H:%M:%S"),
"Date_Only": date_obj_ist.strftime("%Y-%m-%d"),
"Hour": date_obj_ist.hour,
"Day_of_Week": date_obj_ist.strftime("%A"),
"Username": author.get("userName", ""),
"Text": text,
"Likes": item.get("likeCount", 0),
"Retweets": item.get("retweetCount", 0),
"Replies": item.get("replyCount", 0),
"Views": item.get("viewCount", 0),
"URL": item.get("url", ""),
"Has_Media": "extendedEntities" in item,
"Hashtags": ", ".join(hashtags),
"Mentions": ", ".join(mentions),
}
def _extract_best_account_details(self, all_author_data: List[Dict], target_username: str = None) -> Dict:
"""Extract the most complete account details from author data."""
if not all_author_data:
# If no author data and we have a target username, create a basic structure
if target_username:
return {
"name": target_username,
"username": target_username,
"bio": "",
"followers_count": 0,
"following_count": 0,
"tweet_count": 0,
"verified": False,
"profile_image_url": ""
}
return {}
# Find the author data with the most complete information
best_author = self._find_most_complete_author(all_author_data)
# Debug information
if st.session_state.get('debug_mode', False):
st.write("Debug - Found", len(all_author_data), "author objects")
st.write("Debug - Best author data keys:", list(best_author.keys()))
st.write("Debug - Best author data sample:", {
k: v for k, v in best_author.items()
if k in ['name', 'userName', 'followers', 'following', 'statusesCount']
})
return self._standardize_account_details(best_author)
def _find_most_complete_author(self, all_author_data: List[Dict]) -> Dict:
"""Find the author data object with the most complete information."""
best_author = {}
best_score = -1
for author in all_author_data:
score = self._calculate_author_completeness_score(author)
if score > best_score:
best_score = score
best_author = author
return best_author if best_score > 0 else (all_author_data[0] if all_author_data else {})
def _calculate_author_completeness_score(self, author: Dict) -> int:
"""Calculate completeness score for author data."""
score = 0
# Check for follower metrics (high priority)
followers = (author.get("followers") or author.get("followersCount") or
author.get("followers_count") or
author.get("publicMetrics", {}).get("followers_count") or
safe_get_nested(author, ["publicMetrics", "followers_count"]) or
safe_get_nested(author, ["public_metrics", "followers_count"]) or 0)
if followers > 0:
score += 3
following = (author.get("following") or author.get("followingCount") or
author.get("following_count") or author.get("friends_count") or
author.get("publicMetrics", {}).get("following_count") or
safe_get_nested(author, ["publicMetrics", "following_count"]) or
safe_get_nested(author, ["public_metrics", "following_count"]) or 0)
if following > 0:
score += 2
tweet_count = (author.get("statusesCount") or author.get("statuses_count") or
author.get("tweet_count") or
author.get("publicMetrics", {}).get("tweet_count") or
safe_get_nested(author, ["publicMetrics", "tweet_count"]) or
safe_get_nested(author, ["public_metrics", "tweet_count"]) or 0)
if tweet_count > 0:
score += 2
# Check for profile information (lower priority)
if author.get("description") or author.get("profile_bio"):
score += 1
if author.get("verified") or author.get("isVerified"):
score += 1
return score
def _convert_to_ist_format(self, twitter_date_str: str) -> str:
"""Convert Twitter date string to IST format."""
if not twitter_date_str or twitter_date_str == "":
return ""
try:
# Parse the Twitter date format: "Mon Jul 08 09:31:59 +0000 2013"
utc_dt = datetime.strptime(twitter_date_str, TWITTER_DATE_FORMAT)
# Convert to IST
ist_tz = pytz.timezone(IST_TIMEZONE)
ist_dt = utc_dt.astimezone(ist_tz)
# Format as a more readable IST date
# Format: "8 July 2013, 3:01 PM IST"
formatted_date = ist_dt.strftime("%d %B %Y, %I:%M %p IST")
return formatted_date
except ValueError:
# If parsing fails, return the original string
return twitter_date_str
def _standardize_account_details(self, author_data: Dict) -> Dict:
"""Standardize account details from various possible field names."""
# Debug: Print raw author data keys (only in debug mode)
if st.session_state.get('debug_mode', False):
st.write(f"Debug - Author data keys: {list(author_data.keys())}")
# Try multiple possible field names for metrics with additional variations
followers_count = (
author_data.get("followers") or
author_data.get("followersCount") or
author_data.get("followers_count") or
author_data.get("publicMetrics", {}).get("followers_count") or
safe_get_nested(author_data, ["publicMetrics", "followers_count"]) or
safe_get_nested(author_data, ["public_metrics", "followers_count"]) or
0
)
following_count = (
author_data.get("following") or
author_data.get("followingCount") or
author_data.get("following_count") or
author_data.get("friends_count") or
author_data.get("publicMetrics", {}).get("following_count") or
safe_get_nested(author_data, ["publicMetrics", "following_count"]) or
safe_get_nested(author_data, ["public_metrics", "following_count"]) or
0
)
tweet_count = (
author_data.get("statusesCount") or
author_data.get("statuses_count") or
author_data.get("tweet_count") or
author_data.get("publicMetrics", {}).get("tweet_count") or
safe_get_nested(author_data, ["publicMetrics", "tweet_count"]) or
safe_get_nested(author_data, ["public_metrics", "tweet_count"]) or
0
)
# Extract account creation date
raw_create_date = (
author_data.get("createdAt") or
author_data.get("created_at") or
author_data.get("account_create_date") or
""
)
# Convert to IST format if we have a valid date
account_create_date = self._convert_to_ist_format(raw_create_date)
return {
"name": author_data.get("name", ""),
"username": author_data.get("userName", "") or author_data.get("username", ""),
"bio": author_data.get("description", "") or author_data.get("bio", ""),
"followers_count": followers_count,
"following_count": following_count,
"tweet_count": tweet_count,
"verified": author_data.get("verified", False) or author_data.get("isVerified", False),
"profile_image_url": author_data.get("profileImageUrl", "") or author_data.get("profile_image_url", ""),
"account_create_date": account_create_date,
# Engagement metrics will be calculated from tweet data and added later
"likes_count": 0,
"views_count": 0,
"reply_count": 0,
"repost_count": 0,
}
# =============================================================================
# UI COMPONENTS
# =============================================================================
class UIComponents:
"""Reusable UI components for the dashboard."""
@staticmethod
def display_account_info(account_details: Dict) -> None:
"""Display account information section."""
if not account_details:
return
st.subheader(f"π€ Account: @{account_details['username']}")
# Profile image
if account_details.get('profile_image_url'):
st.image(account_details['profile_image_url'], width=80)
# Account name and verification
verification_badge = 'β
' if account_details.get('verified') else ''
st.markdown(f"**{account_details.get('name')}** {verification_badge}")
# Bio
if account_details.get('bio'):
st.caption(account_details.get('bio'))
# Metrics
UIComponents._display_account_metrics(account_details)
st.divider()
@staticmethod
def _display_account_metrics(account_details: Dict) -> None:
"""Display account metrics (followers, following, posts)."""
# Account creation date
create_date = account_details.get('account_create_date', '')
if create_date:
st.caption(f"π
Account created: {create_date}")
# Basic metrics
m1, m2, m3 = st.columns(3)
followers = account_details.get('followers_count', 0)
following = account_details.get('following_count', 0)
posts = account_details.get('tweet_count', 0)
m1.metric(
"Followers",
format_large_number(followers),
help="Follower count from Twitter API"
)
m2.metric(
"Following",
format_large_number(following),
help="Following count from Twitter API"
)
m3.metric(
"Total Posts",
format_large_number(posts),
help="Total tweet count from Twitter API"
)
# Engagement metrics
likes = account_details.get('likes_count', 0)
views = account_details.get('views_count', 0)
replies = account_details.get('reply_count', 0)
reposts = account_details.get('repost_count', 0)
if likes > 0 or views > 0 or replies > 0 or reposts > 0:
st.caption("**π Total Engagement:**")
e1, e2, e3, e4 = st.columns(4)
e1.metric(
"Likes",
format_large_number(likes),
help="Total likes count"
)
e2.metric(
"Views",
format_large_number(views),
help="Total views/impressions count"
)
e3.metric(
"Replies",
format_large_number(replies),
help="Total replies count"
)
e4.metric(
"Reposts",
format_large_number(reposts),
help="Total reposts/retweets count"
)
# Advanced metrics sections
UIComponents._display_content_quality_metrics(account_details)
UIComponents._display_media_usage_metrics(account_details)
UIComponents._display_activity_patterns(account_details)
UIComponents._display_performance_metrics(account_details)
UIComponents._display_engagement_ratios(account_details)
# Warning for missing data
if followers == 0 and following == 0 and posts == 0:
st.warning("β οΈ Account metrics unavailable - this may be due to API limitations or account privacy settings")
@staticmethod
def _display_content_quality_metrics(account_details: Dict) -> None:
"""Display content quality metrics."""
avg_likes = account_details.get('avg_likes_per_tweet', 0)
avg_views = account_details.get('avg_views_per_tweet', 0)
engagement_rate = account_details.get('avg_engagement_rate', 0)
avg_length = account_details.get('avg_tweet_length', 0)
if avg_likes > 0 or avg_views > 0 or engagement_rate > 0:
st.caption("**π Content Quality:**")
q1, q2, q3, q4 = st.columns(4)
q1.metric(
"Avg Likes/Tweet",
f"{avg_likes:.1f}",
help="Average likes per tweet"
)
q2.metric(
"Avg Views/Tweet",
format_large_number(int(avg_views)),
help="Average views per tweet"
)
q3.metric(
"Engagement Rate",
f"{engagement_rate:.1f}%",
help="(Likes + Retweets) / Views * 100"
)
q4.metric(
"Avg Tweet Length",
f"{avg_length:.0f} chars",
help="Average character length per tweet"
)
@staticmethod
def _display_media_usage_metrics(account_details: Dict) -> None:
"""Display media usage metrics."""
media_count = account_details.get('tweets_with_media_count', 0)
media_percentage = account_details.get('media_usage_percentage', 0)
likes_with_media = account_details.get('avg_likes_with_media', 0)
likes_without_media = account_details.get('avg_likes_without_media', 0)
if media_count > 0 or media_percentage > 0:
st.caption("**π¬ Media Usage:**")
m1, m2, m3, m4 = st.columns(4)
m1.metric(
"Tweets with Media",
f"{media_count}",
help="Number of tweets with media attachments"
)
m2.metric(
"Media Usage",
f"{media_percentage:.1f}%",
help="Percentage of tweets with media"
)
m3.metric(
"Avg Likes (Media)",
f"{likes_with_media:.1f}",
help="Average likes for tweets with media"
)
m4.metric(
"Avg Likes (No Media)",
f"{likes_without_media:.1f}",
help="Average likes for tweets without media"
)
@staticmethod
def _display_activity_patterns(account_details: Dict) -> None:
"""Display activity pattern metrics."""
most_active_hour = account_details.get('most_active_hour', 0)
most_active_day = account_details.get('most_active_day', 'Unknown')
top_hours = account_details.get('top_activity_hours', [])
if most_active_hour > 0 or most_active_day != 'Unknown':
st.caption("**β° Activity Patterns:**")
a1, a2, a3, a4 = st.columns(4)
a1.metric(
"Most Active Hour",
f"{most_active_hour}:00",
help="Hour of day with most tweets"
)
a2.metric(
"Most Active Day",
most_active_day,
help="Day of week with most tweets"
)
a3.metric(
"Top Hours",
", ".join([f"{h}:00" for h in top_hours[:2]]),
help="Top active hours"
)
# Hashtag and mention usage
hashtags = account_details.get('total_hashtags_used', 0)
mentions = account_details.get('total_mentions_used', 0)
a4.metric(
"Hashtags Used",
f"{hashtags}",
help="Total hashtags used in tweets"
)
@staticmethod
def _display_performance_metrics(account_details: Dict) -> None:
"""Display performance metrics."""
highest_likes = account_details.get('highest_likes', 0)
viral_count = account_details.get('viral_tweets_count', 0)
viral_percentage = account_details.get('viral_content_percentage', 0)
top_tweet_text = account_details.get('top_tweet_text', '')
top_tweet_url = account_details.get('top_tweet_url', '')
if highest_likes > 0 or viral_count > 0:
st.caption("**π Performance:**")
p1, p2, p3, p4 = st.columns(4)
p1.metric(
"Highest Likes",
format_large_number(highest_likes),
help="Most likes on a single tweet"
)
p2.metric(
"Viral Tweets",
f"{viral_count}",
help="Tweets in top 10% by likes"
)
p3.metric(
"Viral Content %",
f"{viral_percentage:.1f}%",
help="Percentage of viral tweets"
)
p4.metric(
"Engagement Score",
f"{account_details.get('engagement_score', 0):.1f}",
help="Weighted engagement score (likesΓ1 + retweetsΓ2 + repliesΓ3)"
)
# Show top tweet if available
if top_tweet_text and top_tweet_url:
st.caption("**π Top Performing Tweet:**")
with st.expander("View top tweet"):
st.write(f"**Likes:** {format_large_number(highest_likes)}")
st.write(f"**Text:** {top_tweet_text}")
st.write(f"**URL:** {top_tweet_url}")
@staticmethod
def _display_engagement_ratios(account_details: Dict) -> None:
"""Display engagement ratio metrics."""
like_to_view = account_details.get('like_to_view_ratio', 0)
retweet_to_like = account_details.get('retweet_to_like_ratio', 0)
reply_to_like = account_details.get('reply_to_like_ratio', 0)
total_engagement = account_details.get('total_engagement', 0)
if like_to_view > 0 or retweet_to_like > 0 or reply_to_like > 0:
st.caption("**π Engagement Ratios:**")
r1, r2, r3, r4 = st.columns(4)
r1.metric(
"Like Rate",
f"{like_to_view:.2f}%",
help="Likes per view percentage"
)
r2.metric(
"Retweet Rate",
f"{retweet_to_like:.2f}%",
help="Retweets per like percentage"
)
r3.metric(
"Reply Rate",
f"{reply_to_like:.2f}%",
help="Replies per like percentage"
)
r4.metric(
"Total Engagement",
format_large_number(total_engagement),
help="Total likes + retweets + replies"
)
@staticmethod
def display_key_metrics(df: pd.DataFrame) -> None:
"""Display key engagement metrics."""
if df.empty:
return
st.subheader("π Key Metrics")
# Basic metrics
c1, c2, c3 = st.columns(3)
c1.metric("Total Tweets Scanned", f"{len(df):,}")
c2.metric("Total Likes", f"{df['Likes'].sum():,}")
c3.metric("Total Retweets", f"{df['Retweets'].sum():,}")
# Engagement metrics
st.subheader("β‘ Engagement")
df_copy = df.copy()
df_copy["Engagement"] = df_copy["Likes"] + df_copy["Retweets"] + df_copy["Replies"]
total_engagement = df_copy["Engagement"].sum()
avg_engagement = total_engagement / len(df) if len(df) > 0 else 0
total_views = df["Views"].sum()
engagement_rate = (total_engagement / total_views * 100) if total_views > 0 else 0
e1, e2 = st.columns(2)
e1.metric("Avg. Engagement/Tweet", f"{avg_engagement:.1f}")
e2.metric("Engagement Rate (vs Views)", f"{engagement_rate:.2f}%")
st.divider()
@staticmethod
def display_content_analysis(metrics: Dict) -> None:
"""Display content analysis section."""
st.subheader("π Content Analysis")
top_hashtags = metrics.get("top_hashtags", [])
top_mentions = metrics.get("top_mentions", [])
if top_hashtags:
st.markdown("**Top Hashtags**")
st.write(", ".join([f"`#{tag}` ({count})" for tag, count in top_hashtags]))
if top_mentions:
st.markdown("**Top Mentions**")
st.write(", ".join([f"`@{user}` ({count})" for user, count in top_mentions]))
@staticmethod
def display_ai_summary(gemini_summary: Optional[str]) -> None:
"""Display AI-generated summary section."""
if gemini_summary:
st.subheader("π§ AI Summary & Recommendations")
st.markdown(gemini_summary)
st.divider()
@staticmethod
def display_most_engaging_tweet(df: pd.DataFrame) -> None:
"""Display the most engaging tweet."""
if df.empty:
return
st.subheader("π Most Engaging Tweet")
df_copy = df.copy()
df_copy["Engagement"] = df_copy["Likes"] + df_copy["Retweets"] + df_copy["Replies"]
most_engaging = df_copy.loc[df_copy["Engagement"].idxmax()]
with st.container(border=True):
st.markdown(f"**{most_engaging['Text']}**")
stats = (f"β€οΈ {most_engaging['Likes']} | π {most_engaging['Retweets']} | "
f"π¬ {most_engaging['Replies']} | ποΈ {most_engaging['Views']}")
st.markdown(f"**{stats}** | [{most_engaging['Date']}]({most_engaging['URL']})")
st.divider()
@staticmethod
def display_charts(df: pd.DataFrame) -> None:
"""Display data visualization charts."""
if df.empty:
return
st.subheader("π
Posting Patterns")
# Tweets by day
df_by_day = df.groupby('Date_Only')['Text'].count().reset_index()
df_by_day['Date_Only'] = pd.to_datetime(df_by_day['Date_Only'])
fig_day = px.line(
df_by_day,
x='Date_Only',
y='Text',
title="Tweets per Day",
labels={'Date_Only': 'Date', 'Text': 'Count'}
)
st.plotly_chart(fig_day, use_container_width=True)
@staticmethod
def display_data_download(df: pd.DataFrame) -> None:
"""Display raw data table with download option."""
st.subheader("π Raw Data")
st.dataframe(df)
if not df.empty:
csv = df.to_csv(index=False).encode('utf-8')
st.download_button(
"π₯ Download as CSV",
csv,
f"twitter_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
"text/csv",
key="download-csv",
use_container_width=True
)
# =============================================================================
# DASHBOARD MANAGEMENT
# =============================================================================
class TwitterDashboard:
"""Main dashboard for displaying Twitter analysis results."""
def __init__(self, df: pd.DataFrame, metrics: Dict, dataset_id: str,
analysis_type: str = "Account's Tweets", gemini_summary: Optional[str] = None):
self.df = df
self.metrics = metrics
self.dataset_id = dataset_id
self.analysis_type = analysis_type
self.gemini_summary = gemini_summary
def render(self) -> None:
"""Render the complete dashboard."""
if self.df.empty:
st.warning("No data available to display.")
return
# Main layout
left_col, right_col = st.columns([1, 1], gap="large")
with left_col:
# Only show account info for "Account's Tweets" analysis
if self.analysis_type == "Account's Tweets":
UIComponents.display_account_info(self.metrics.get("account_details", {}))
else:
# For "Comments to Account", show a different header
st.subheader(f"π¬ Comments Analysis")
st.info("Analyzing comments and replies directed to the account")
st.divider()
UIComponents.display_key_metrics(self.df)
UIComponents.display_content_analysis(self.metrics)
with right_col:
UIComponents.display_ai_summary(self.gemini_summary)
UIComponents.display_most_engaging_tweet(self.df)
UIComponents.display_charts(self.df)
# Full-width sections
UIComponents.display_data_download(self.df)
# =============================================================================
# SCHEDULER MANAGEMENT
# =============================================================================
class SchedulerManager:
"""Manages scheduled users and automation settings."""
def __init__(self, db: DatabaseManager):
self.db = db
def render_controls(self) -> None:
"""Render scheduler management interface."""
st.header("π Scheduler Management")
if not self.db.is_connected:
st.warning("β οΈ Database not connected. Scheduler features unavailable.")
return
self._display_current_users()
st.divider()
self._display_add_user_form()
st.divider()
self._display_scheduler_info()
def _display_current_users(self) -> None:
"""Display currently scheduled users."""
st.subheader("π Current Scheduled Users")
try:
scheduled_users = list(self.db.scheduler_users_collection.find({"active": True}))
usernames = [user["username"] for user in scheduled_users]
except Exception as e:
st.error(f"Error fetching scheduled users: {e}")
return
if usernames:
for username in usernames:
col1, col2 = st.columns([3, 1])
with col1:
st.write(f"@{username}")
with col2:
if st.button("ποΈ", key=f"remove_{username}", help=f"Remove @{username}"):
if self._remove_user(username):
st.rerun()
else:
st.info("No users currently scheduled.")
def _display_add_user_form(self) -> None:
"""Display form to add new users."""
st.subheader("β Add New User")
new_username = st.text_input("Username to schedule (without @)", key="new_scheduled_user")
col1, col2 = st.columns(2)
with col1:
if st.button("Add User", use_container_width=True, disabled=not new_username):
if self._add_user(new_username):
st.success(f"β
Added @{new_username} to scheduler")
st.rerun()
with col2:
if st.button("π Refresh List", use_container_width=True):
st.rerun()
def _display_scheduler_info(self) -> None:
"""Display scheduler information."""
st.subheader("βΉοΈ Scheduler Info")
st.info("""
**GitHub Actions Automation:**
- Runs daily at 12:00 AM IST automatically
- Can be triggered manually from GitHub Actions tab
- Scrapes only the previous day's data (no overlap)
- Stores results in MongoDB with duplicate detection
""")
def _add_user(self, username: str) -> bool:
"""Add user to scheduled scraping list."""
try:
# Check if user already exists
existing_users = list(self.db.scheduler_users_collection.find({"active": True}))
if username in [user["username"] for user in existing_users]:
st.warning("User already scheduled")
return False
user_doc = {
"username": username,
"active": True,
"added_at": datetime.utcnow(),
"last_scraped": None
}
self.db.scheduler_users_collection.update_one(
{"username": username},
{"$set": user_doc},
upsert=True
)
return True
except Exception as e:
st.error(f"Error adding user: {e}")
return False
def _remove_user(self, username: str) -> bool:
"""Remove user from scheduled scraping list."""
try:
self.db.scheduler_users_collection.update_one(
{"username": username},
{"$set": {"active": False}}
)
return True
except Exception as e:
st.error(f"Error removing user: {e}")
return False
# =============================================================================
# MAIN APPLICATION
# =============================================================================
class TwitterAnalyzerApp:
"""Main Twitter Analyzer application."""
def __init__(self):
self._setup_page()
self._initialize_services()
def _setup_page(self) -> None:
"""Configure Streamlit page settings."""
st.set_page_config(**PAGE_CONFIG)
st.title("π¦ Twitter Content Analyzer")
def _initialize_services(self) -> None:
"""Initialize all required services."""
try:
self.config = AppConfig()
self.db = DatabaseManager(self.config.mongodb_uri)
self.apify = ApifyService(self.config.apify_api_key)
self.gemini = GeminiService(self.config.gemini_api_key) if self.config.gemini_api_key else None
self.processor = TweetDataProcessor()
self.scheduler = SchedulerManager(self.db)
except ValueError as e:
st.error(f"Initialization failed: {e}. Please check your .env.local file.")
st.stop()
def run(self) -> None:
"""Execute the main application."""
self._render_sidebar()
if not hasattr(self, 'run_button') or not self.run_button or not self.username:
st.info("Please enter a Twitter username and click 'Analyze' to begin.")
return
self._perform_analysis()
def _render_sidebar(self) -> None:
"""Render the application sidebar."""
with st.sidebar:
self._render_analysis_controls()
self._render_debug_options()
st.divider()
self.scheduler.render_controls()
def _render_analysis_controls(self) -> None:
"""Render analysis control widgets."""
st.header("βοΈ Analysis Controls")
self.analysis_type = st.radio(
"Analysis Type",
["Account's Tweets", "Comments to Account"],
horizontal=True
)
self.username = st.text_input("Twitter Username (without @)", DEFAULT_USERNAME)
# Date inputs
today = datetime.now()
last_week = today - timedelta(days=DEFAULT_DAYS_BACK)
self.since_date = st.date_input("Start Date", last_week)
self.until_date = st.date_input("End Date", today)
self.run_button = st.button("π Analyze", use_container_width=True, type="primary")
def _render_debug_options(self) -> None:
"""Render debug options."""
with st.expander("π§ Debug Options"):
st.session_state['debug_mode'] = st.checkbox(
"Show API Debug Info",
help="Shows raw API data for troubleshooting"
)
def _perform_analysis(self) -> None:
"""Perform the main analysis workflow."""
since_str = self.since_date.strftime("%Y-%m-%d")
until_str = self.until_date.strftime("%Y-%m-%d")
# Fetch data based on analysis type
try:
if self.analysis_type == "Account's Tweets":
raw_data, dataset_id = self.apify.fetch_account_tweets(self.username, since_str, until_str)
context = f"This is an analysis of tweets by the Twitter account @{self.username}."
else:
raw_data, dataset_id = self.apify.fetch_account_comments(self.username, since_str, until_str)
context = f"This is an analysis of comments/replies sent to the Twitter account @{self.username}."
if not raw_data:
st.error("No data was returned from the API. The account may be private, have no tweets in the selected range, or there might be an API issue.")
return
# Process data
df, metrics = self.processor.process_tweets(raw_data, self.username)
# Generate AI summary if available
gemini_summary = None
if self.gemini:
gemini_summary = self.gemini.generate_analysis(df.head(100), context)
else:
st.warning("GEMINI_API_KEY not found. AI summary will be skipped.")
# Display results
dashboard = TwitterDashboard(df, metrics, dataset_id, self.analysis_type, gemini_summary)
dashboard.render()
except Exception as e:
logger.error(f"Analysis failed: {e}")
st.error(f"Analysis failed: {str(e)}")
# =============================================================================
# APPLICATION ENTRY POINT
# =============================================================================
def main():
"""Application entry point."""
app = TwitterAnalyzerApp()
app.run()
if __name__ == "__main__":
main()
|