Spaces:
Sleeping
Sleeping
File size: 17,710 Bytes
30b1715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import os
from dotenv import load_dotenv
import streamlit as st
from streamlit.runtime.scriptrunner import RerunException, StopException, RerunData
from openai import OpenAI
from pymongo import MongoClient
from datetime import datetime, timedelta
import time
from streamlit_autorefresh import st_autorefresh
from streamlit.runtime.caching import cache_data
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
# Load environment variables
load_dotenv()
# Configuration
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MONGODB_URI = os.getenv("MONGODB_URI")
# Initialize clients
openai_client = OpenAI(api_key=OPENAI_API_KEY)
mongo_client = MongoClient(MONGODB_URI)
db = mongo_client["Wall_Street"]
conversation_history = db["conversation_history"]
trainer_feedback = db["trainer_feedback"]
trainer_instructions = db["trainer_instructions"]
global_common_memory = db["global_common_memory"] # New global common memory collection
# Define a unique identifier for global memory
GLOBAL_MEMORY_ID = "global_common_memory_id"
# Set up Streamlit page configuration
st.set_page_config(page_title="GPT-Driven Chat System - Operator", page_icon="π οΈ", layout="wide")
# Custom CSS to improve the UI
st.markdown("""
<style>
/* Your custom CSS styles */
</style>
""", unsafe_allow_html=True)
# --- Common Memory Functions ---
@cache_data(ttl=300) # Cache for 5 minutes
def get_global_common_memory():
"""Retrieve the global common memory."""
memory_doc = global_common_memory.find_one({"memory_id": "global_common_memory_id"})
return memory_doc.get('memory', []) if memory_doc else []
def append_to_global_common_memory(content):
"""Append content to the global common memory."""
try:
# First, ensure the document exists with an initialized memory array
global_common_memory.update_one(
{"memory_id": GLOBAL_MEMORY_ID},
{"$setOnInsert": {"memory": []}},
upsert=True
)
# Then, add the new content to the memory array
result = global_common_memory.update_one(
{"memory_id": GLOBAL_MEMORY_ID},
{"$addToSet": {"memory": content}}
)
# Invalidate the cache after updating
get_global_common_memory.clear()
if result.modified_count > 0:
st.success("Memory appended successfully!")
else:
st.info("This memory item already exists or no changes were made.")
raise RerunException(RerunData(page_script_hash=None))
except RerunException:
raise
except Exception as e:
st.error(f"Failed to append to global common memory: {str(e)}")
def clear_global_common_memory():
"""Clear all items from the global common memory."""
try:
global_common_memory.update_one(
{"memory_id": GLOBAL_MEMORY_ID},
{"$set": {"memory": []}},
upsert=True
)
# Invalidate the cache after clearing
get_global_common_memory.clear()
st.success("Global common memory cleared successfully!")
except Exception as e:
st.error(f"Failed to clear global common memory: {str(e)}")
# --- Takeover Functions ---
def activate_takeover(session_id):
"""
Activates takeover mode for the given session.
"""
try:
db.takeover_status.update_one(
{"session_id": session_id},
{"$set": {"active": True, "activated_at": datetime.utcnow()}},
upsert=True
)
st.success(f"Takeover activated for session {session_id[:8]}...")
except Exception as e:
st.error(f"Failed to activate takeover: {str(e)}")
def deactivate_takeover(session_id):
"""
Deactivates takeover mode for the given session.
"""
try:
db.takeover_status.update_one(
{"session_id": session_id},
{"$set": {"active": False}},
)
st.success(f"Takeover deactivated for session {session_id[:8]}...")
except Exception as e:
st.error(f"Failed to deactivate takeover: {str(e)}")
def send_admin_message(session_id, message):
"""
Sends an admin message directly to the user during a takeover.
"""
admin_message = {
"role": "admin",
"content": message,
"timestamp": datetime.utcnow(),
"status": "approved"
}
try:
# Upsert the admin message
result = conversation_history.update_one(
{"session_id": session_id},
{
"$push": {"messages": admin_message},
"$set": {"last_updated": datetime.utcnow()}
}
)
if result.modified_count > 0:
st.success("Admin message sent successfully!")
else:
st.error("Failed to send admin message.")
except Exception as e:
st.error(f"Failed to send admin message: {str(e)}")
# --- Admin Dashboard Functions ---
def handle_admin_intervention():
st.subheader("Admin Intervention")
st.subheader("Review Pending Responses")
pending_responses = conversation_history.find(
{"messages.role": "assistant", "messages.status": "pending"}
)
for conversation in pending_responses:
st.write(f"Session ID: {conversation['session_id'][:8]}...")
# Display global common memory
st.subheader("Global Common Memory")
common_memory = get_global_common_memory()
if common_memory:
for idx, item in enumerate(common_memory, 1):
st.text(f"{idx}. {item}")
else:
st.info("Global common memory is currently empty.")
for i, message in enumerate(conversation['messages']):
if message['role'] == 'assistant' and message.get('status') == 'pending':
user_message = conversation['messages'][i-1]['content'] if i > 0 else "N/A"
st.write(f"**User:** {user_message}")
st.write(f"**GPT:** {message['content']}")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Approve", key=f"approve_{conversation['session_id']}_{i}"):
if approve_response(conversation['session_id'], i):
st.success("Response approved")
time.sleep(0.5) # Short delay to ensure the success message is visible
st.rerun()
with col2:
if st.button("Modify", key=f"modify_{conversation['session_id']}_{i}"):
st.session_state['modifying'] = (conversation['session_id'], i)
st.rerun()
with col3:
if st.button("Regenerate", key=f"regenerate_{conversation['session_id']}_{i}"):
st.session_state['regenerating'] = (conversation['session_id'], i)
st.rerun()
st.divider()
if 'regenerating' in st.session_state:
try:
session_id, message_index = st.session_state['regenerating']
with st.form(key="regenerate_form"):
operator_input = st.text_input("Enter additional instructions for regeneration:")
submit_button = st.form_submit_button("Submit")
if submit_button:
del st.session_state['regenerating'] # Remove the key after submission
regenerate_response(session_id, message_index, operator_input)
st.success("Response regenerated with operator input.")
st.rerun()
except ValueError:
st.error("Invalid regenerating state. Please try again.")
if 'modifying' in st.session_state:
session_id, message_index = st.session_state['modifying']
conversation = conversation_history.find_one({"session_id": session_id})
message = conversation['messages'][message_index]
modified_content = st.text_area("Modify the response:", value=message['content'])
if st.button("Save Modification"):
save_modified_response(session_id, message_index, modified_content)
st.success("Response modified and approved")
del st.session_state['modifying']
st.rerun()
def approve_response(session_id, message_index):
try:
result = conversation_history.update_one(
{"session_id": session_id},
{"$set": {f"messages.{message_index}.status": "approved"}}
)
return result.modified_count > 0
except Exception as e:
st.error(f"Failed to approve response: {str(e)}")
return False
def save_modified_response(session_id, message_index, modified_content):
try:
conversation_history.update_one(
{"session_id": session_id},
{
"$set": {
f"messages.{message_index}.content": modified_content,
f"messages.{message_index}.status": "approved"
}
}
)
except Exception as e:
st.error(f"Failed to save modified response: {str(e)}")
def regenerate_response(session_id, message_index, operator_input):
try:
conversation = conversation_history.find_one({"session_id": session_id})
user_message = conversation['messages'][message_index - 1]['content'] if message_index > 0 else ""
new_response, is_uncertain = get_gpt_response(user_message, system_message=operator_input)
if is_uncertain:
status = "pending"
else:
status = "approved"
conversation_history.update_one(
{"session_id": session_id},
{
"$set": {
f"messages.{message_index}.content": new_response,
f"messages.{message_index}.status": status
}
}
)
except Exception as e:
st.error(f"Failed to regenerate response: {str(e)}")
# --- Admin Page ---
def admin_page():
st.title("π οΈ Operator Dashboard")
# Add auto-refresh every 10 seconds (10000 milliseconds)
st_autorefresh(interval=10000, limit=None, key="operator_autorefresh")
if st.button("π Reload Dashboard"):
st.rerun()
try:
deleted_count = cleanup_old_chats()
if deleted_count is not None:
if deleted_count > 0:
st.success(f"Cleaned up {deleted_count} inactive chat(s).")
else:
st.info("No inactive chats to clean up.")
else:
st.warning("Unable to perform cleanup. Please check the database connection.")
tab1, tab2 = st.tabs([
"π Current Chats",
"π§ Admin Intervention",
])
with tab1:
st.header("Current Chats")
recent_chats = fetch_recent_chats()
if not recent_chats:
st.info("No recent chats found.")
else:
cols_per_row = 3
for i in range(0, len(recent_chats), cols_per_row):
cols = st.columns(cols_per_row)
for j, chat in enumerate(recent_chats[i:i + cols_per_row]):
with cols[j]:
with st.expander(f"Session: {chat['session_id'][:8]}...", expanded=False):
display_chat_preview(chat)
col1, col2 = st.columns(2)
with col1:
if st.button("View Full Chat", key=f"view_{chat['session_id']}"):
st.session_state['selected_chat'] = chat['session_id']
st.rerun()
with col2:
if st.button("Delete Chat", key=f"delete_{chat['session_id']}"):
delete_chat(chat['session_id'])
st.rerun()
with tab2:
handle_admin_intervention()
st.caption(f"Last refreshed: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
except (RerunException, StopException):
raise
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# --- Fetch Recent Chats ---
def fetch_recent_chats():
return list(conversation_history.find({},
{"session_id": 1, "last_updated": 1, "messages": {"$slice": 3}})
.sort("last_updated", -1)
.limit(10))
# --- Display Chat Preview ---
def display_chat_preview(chat):
st.subheader(f"Session: {chat['session_id'][:8]}...")
last_updated = chat.get('last_updated', datetime.utcnow())
st.caption(f"Last updated: {last_updated.strftime('%Y-%m-%d %H:%M:%S')}")
for message in chat.get('messages', [])[:3]:
with st.chat_message(message['role']):
st.markdown(f"**{message['role'].capitalize()}**: {message['content'][:100]}...")
st.divider()
# --- Delete Chat ---
def delete_chat(session_id):
try:
result = conversation_history.delete_one({"session_id": session_id})
if result.deleted_count > 0:
st.success(f"Chat {session_id[:8]}... deleted successfully.")
else:
st.error("Failed to delete chat. Please try again.")
except Exception as e:
st.error(f"Error deleting chat: {str(e)}")
# --- Cleanup Old Chats ---
def cleanup_old_chats():
try:
cutoff_time = datetime.utcnow() - timedelta(minutes=5)
result = conversation_history.delete_many({"last_updated": {"$lt": cutoff_time}})
return result.deleted_count
except Exception as e:
print(f"Error during chat cleanup: {str(e)}")
return None
# --- GPT Response Function ---
def get_gpt_response(prompt, context="", system_message=None):
"""
Generates a response from the GPT model based on the user prompt and retrieved context.
Incorporates the global common memory and optional system message.
Returns a tuple of (response, is_uncertain).
"""
try:
common_memory = get_global_common_memory()
system_msg = (
"You are a helpful assistant. Use the following context and global common memory "
"to inform your responses, but don't mention them explicitly unless directly relevant to the user's question."
)
if system_message:
system_msg += f"\n\nOperator Instructions:\n{system_message}"
if common_memory:
memory_str = "\n".join(common_memory)
system_msg += f"\n\nGlobal Common Memory:\n{memory_str}"
messages = [
{"role": "system", "content": system_msg},
{"role": "user", "content": f"Context: {context}\n\nUser query: {prompt}"}
]
completion = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=messages
)
print(completion)
response = completion.choices[0].message.content.strip()
# TODO: Implement your logic to determine if the response is uncertain
is_uncertain = False # Example placeholder
return response, is_uncertain
except Exception as e:
st.error(f"Error generating response: {str(e)}")
return None, True # Indicates uncertainty due to error
# --- View Full Chat Function ---
def view_full_chat(session_id):
"""Display the full chat and provide takeover functionality."""
# Add a "Go to Dashboard" button at the top
if st.button("π Go to Dashboard"):
st.session_state.pop('selected_chat', None)
st.rerun()
conversation = conversation_history.find_one({"session_id": session_id})
if not conversation:
st.error("Chat not found.")
return
st.header(f"Full Chat - Session ID: {conversation['session_id'][:8]}...")
st.caption(f"Last updated: {conversation.get('last_updated', datetime.utcnow()).strftime('%Y-%m-%d %H:%M:%S')}")
for message in conversation.get('messages', []):
with st.chat_message(message['role']):
st.markdown(f"**{message['role'].capitalize()}**: {message['content']}")
# Takeover functionality
takeover_doc = db.takeover_status.find_one({"session_id": session_id})
takeover_active = takeover_doc.get("active", False) if takeover_doc else False
if takeover_active:
if st.button("Deactivate Takeover"):
deactivate_takeover(session_id)
st.success("Takeover deactivated.")
st.rerun()
else:
if st.button("Activate Takeover"):
activate_takeover(session_id)
st.success("Takeover activated.")
st.rerun()
# If takeover is active, allow operator to send messages
if takeover_active:
with st.form(key=f"admin_message_form_{session_id}"):
admin_message = st.text_input("Enter message to send to the user:")
submit_button = st.form_submit_button("Send Message")
if submit_button and admin_message:
send_admin_message(session_id, admin_message)
st.success("Admin message sent.")
st.rerun()
# --- Main Function ---
def main():
try:
if 'selected_chat' in st.session_state:
view_full_chat(st.session_state['selected_chat'])
else:
admin_page()
except (RerunException, StopException):
raise
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
if __name__ == "__main__":
main() |