Spaces:
Running
Running
File size: 8,938 Bytes
5a9dbd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from fastapi import FastAPI, Request, Response, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
import httpx
import json
import uuid
from typing import Optional, List, Dict, Any
from pydantic import BaseModel
import asyncio
# 创建FastAPI应用
app = FastAPI()
# 配置CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 定义数据模型
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[Message]
model: str
stream: Optional[bool] = True
class ChatResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Dict[str, Any]]
usage: Optional[Dict[str, int]] = None
# 模型映射
MODEL_MAPPING = {
"gpt-4o-mini-abacus": "OPENAI_GPT4O_MINI",
"claude-3.5-sonnet-abacus": "CLAUDE_V3_5_SONNET",
"claude-3.7-sonnet-abacus": "CLAUDE_V3_7_SONNET",
"claude-3.7-sonnet-thinking-abacus": "CLAUDE_V3_7_SONNET_THINKING",
"o3-mini-abacus": "OPENAI_O3_MINI",
"o3-mini-high-abacus": "OPENAI_O3_MINI_HIGH",
"o1-mini-abacus": "OPENAI_O1_MINI",
"deepseek-r1-abacus": "DEEPSEEK_R1",
"gemini-2-pro-abacus": "GEMINI_2_PRO",
"gemini-2-flash-thinking-abacus": "GEMINI_2_FLASH_THINKING",
"gemini-2-flash-abacus": "GEMINI_2_FLASH",
"gemini-1.5-pro-abacus": "GEMINI_1_5_PRO",
"xai-grok-abacus": "XAI_GROK",
"deepseek-v3-abacus": "DEEPSEEK_V3",
"llama3-1-405b-abacus": "LLAMA3_1_405B",
"gpt-4o-abacus": "OPENAI_GPT4O",
"gpt-4o-2024-08-06-abacus": "OPENAI_GPT4O",
"gpt-3.5-turbo-abacus": "OPENAI_O3_MINI",
"gpt-3.5-turbo-16k-abacus": "OPENAI_O3_MINI_HIGH"
}
BASE_URL = "https://pa002.abacus.ai"
TIMEOUT = 30.0 # 请求超时时间(秒)
MAX_RETRIES = 3 # 最大重试次数
RETRY_DELAY = 1 # 重试延迟(秒)
@app.get("/v1/models")
async def list_models():
"""返回支持的模型列表"""
models = [
{
"id": model_id,
"object": "model",
"created": 1677610602,
"owned_by": "system",
}
for model_id in MODEL_MAPPING.keys()
]
return {
"object": "list",
"data": models
}
# 工具函数:获取请求头
def get_headers(auth_token: str) -> Dict[str, str]:
"""生成请求头"""
return {
"sec-ch-ua-platform": "Windows",
"sec-ch-ua": '"Not(A:Brand";v="99", "Microsoft Edge";v="133", "Chromium";v="133"',
"sec-ch-ua-mobile": "?0",
"X-Abacus-Org-Host": "apps",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36 Edg/133.0.0.0",
"Sec-Fetch-Site": "same-site",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Dest": "empty",
"host": "pa002.abacus.ai",
"Cookie": auth_token,
"Accept": "text/event-stream",
"Content-Type": "text/plain;charset=UTF-8"
}
def process_messages(messages: List[Message]) -> str:
"""处理消息列表,合并成单个消息"""
system_message = next((msg.content for msg in messages if msg.role == "system"), None)
context_messages = [msg for msg in messages if msg.role != "system"][:-1]
current_message = messages[-1].content
full_message = current_message
if system_message:
full_message = f"System: {system_message}\n\n{full_message}"
if context_messages:
context_str = "\n".join(f"{msg.role}: {msg.content}" for msg in context_messages)
full_message = f"Previous conversation:\n{context_str}\nCurrent message: {full_message}"
return full_message
@app.post("/v1/chat/completions")
async def chat_completions(request: Request, chat_request: ChatRequest):
"""处理聊天完成请求"""
# 获取认证token
auth_header = request.headers.get("Authorization", "")
if not auth_header.startswith("Bearer "):
return Response(
content=json.dumps({"error": "未提供有效的Authorization header"}),
status_code=401
)
auth_token = auth_header.replace("Bearer ", "")
# 创建会话ID
conversation_id = str(uuid.uuid4())
# 处理消息
full_message = process_messages(chat_request.messages)
# 准备请求数据
request_data = {
"requestId": str(uuid.uuid4()),
"deploymentConversationId": conversation_id,
"message": full_message,
"isDesktop": True,
"chatConfig": {
"timezone": "Asia/Shanghai",
"language": "zh-CN"
},
"llmName": MODEL_MAPPING.get(chat_request.model, chat_request.model),
"externalApplicationId": str(uuid.uuid4())
}
# 流式请求处理
async def generate_stream():
headers = get_headers(auth_token)
for retry in range(MAX_RETRIES):
try:
async with httpx.AsyncClient() as client:
async with client.stream(
"POST",
f"{BASE_URL}/api/_chatLLMSendMessageSSE",
headers=headers,
content=json.dumps(request_data),
timeout=TIMEOUT
) as response:
async for line in response.aiter_lines():
if not line.strip():
continue
try:
data = json.loads(line)
if data.get("type") == "text" and data.get("title") != "Thinking...":
chunk = {
"id": str(uuid.uuid4()),
"object": "chat.completion.chunk",
"created": int(uuid.uuid1().time_low),
"model": chat_request.model,
"choices": [{
"delta": {
"role": "assistant",
"content": data.get("segment", "")
},
"index": 0
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
if data.get("end"):
# 发送结束标记
chunk = {
"id": str(uuid.uuid4()),
"object": "chat.completion.chunk",
"created": int(uuid.uuid1().time_low),
"model": chat_request.model,
"choices": [{
"delta": {"content": ""},
"index": 0,
"finish_reason": "stop"
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
yield "data: [DONE]\n\n"
break # 成功完成,退出重试循环
except json.JSONDecodeError:
continue
except (httpx.TimeoutException, httpx.RequestError) as e:
if retry == MAX_RETRIES - 1: # 最后一次重试
yield f"data: {json.dumps({'error': str(e)})}\n\n"
yield "data: [DONE]\n\n"
return
await asyncio.sleep(RETRY_DELAY)
return StreamingResponse(
generate_stream(),
media_type="text/event-stream"
)
@app.get("/")
async def health_check():
"""健康检查"""
return {"status": "ok", "version": "1.0.0"}
@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
"""全局异常处理"""
error_message = str(exc)
return Response(
content=json.dumps({
"error": {
"message": error_message,
"type": exc.__class__.__name__,
"code": 500
}
}),
status_code=500,
media_type="application/json"
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|