Spaces:
Runtime error
Runtime error
File size: 12,377 Bytes
02ebd03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from modules.patch import patch_all
patch_all()
import os
import einops
import torch
import numpy as np
import fcbh.model_management
import fcbh.model_detection
import fcbh.model_patcher
import fcbh.utils
import fcbh.controlnet
import modules.sample_hijack
import fcbh.samplers
import fcbh.latent_formats
import modules.advanced_parameters
from fcbh.sd import load_checkpoint_guess_config
from nodes import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, \
ControlNetApplyAdvanced
from fcbh_extras.nodes_freelunch import FreeU_V2
from fcbh.sample import prepare_mask
from modules.patch import patched_sampler_cfg_function
from modules.lora import match_lora
from fcbh.lora import model_lora_keys_unet, model_lora_keys_clip
from modules.config import path_embeddings
from fcbh_extras.nodes_model_advanced import ModelSamplingDiscrete
opEmptyLatentImage = EmptyLatentImage()
opVAEDecode = VAEDecode()
opVAEEncode = VAEEncode()
opVAEDecodeTiled = VAEDecodeTiled()
opVAEEncodeTiled = VAEEncodeTiled()
opControlNetApplyAdvanced = ControlNetApplyAdvanced()
opFreeU = FreeU_V2()
opModelSamplingDiscrete = ModelSamplingDiscrete()
class StableDiffusionModel:
def __init__(self, unet=None, vae=None, clip=None, clip_vision=None, filename=None):
self.unet = unet
self.vae = vae
self.clip = clip
self.clip_vision = clip_vision
self.filename = filename
self.unet_with_lora = unet
self.clip_with_lora = clip
self.visited_loras = ''
self.lora_key_map_unet = {}
self.lora_key_map_clip = {}
if self.unet is not None:
self.lora_key_map_unet = model_lora_keys_unet(self.unet.model, self.lora_key_map_unet)
self.lora_key_map_unet.update({x: x for x in self.unet.model.state_dict().keys()})
if self.clip is not None:
self.lora_key_map_clip = model_lora_keys_clip(self.clip.cond_stage_model, self.lora_key_map_clip)
self.lora_key_map_clip.update({x: x for x in self.clip.cond_stage_model.state_dict().keys()})
@torch.no_grad()
@torch.inference_mode()
def refresh_loras(self, loras):
assert isinstance(loras, list)
if self.visited_loras == str(loras):
return
self.visited_loras = str(loras)
if self.unet is None:
return
print(f'Request to load LoRAs {str(loras)} for model [{self.filename}].')
loras_to_load = []
for name, weight in loras:
if name == 'None':
continue
if os.path.exists(name):
lora_filename = name
else:
lora_filename = os.path.join(modules.config.path_loras, name)
if not os.path.exists(lora_filename):
print(f'Lora file not found: {lora_filename}')
continue
loras_to_load.append((lora_filename, weight))
self.unet_with_lora = self.unet.clone() if self.unet is not None else None
self.clip_with_lora = self.clip.clone() if self.clip is not None else None
for lora_filename, weight in loras_to_load:
lora_unmatch = fcbh.utils.load_torch_file(lora_filename, safe_load=False)
lora_unet, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_unet)
lora_clip, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_clip)
if len(lora_unmatch) > 12:
# model mismatch
continue
if len(lora_unmatch) > 0:
print(f'Loaded LoRA [{lora_filename}] for model [{self.filename}] '
f'with unmatched keys {list(lora_unmatch.keys())}')
if self.unet_with_lora is not None and len(lora_unet) > 0:
loaded_keys = self.unet_with_lora.add_patches(lora_unet, weight)
print(f'Loaded LoRA [{lora_filename}] for UNet [{self.filename}] '
f'with {len(loaded_keys)} keys at weight {weight}.')
for item in lora_unet:
if item not in loaded_keys:
print("UNet LoRA key skipped: ", item)
if self.clip_with_lora is not None and len(lora_clip) > 0:
loaded_keys = self.clip_with_lora.add_patches(lora_clip, weight)
print(f'Loaded LoRA [{lora_filename}] for CLIP [{self.filename}] '
f'with {len(loaded_keys)} keys at weight {weight}.')
for item in lora_clip:
if item not in loaded_keys:
print("CLIP LoRA key skipped: ", item)
@torch.no_grad()
@torch.inference_mode()
def apply_freeu(model, b1, b2, s1, s2):
return opFreeU.patch(model=model, b1=b1, b2=b2, s1=s1, s2=s2)[0]
@torch.no_grad()
@torch.inference_mode()
def load_controlnet(ckpt_filename):
return fcbh.controlnet.load_controlnet(ckpt_filename)
@torch.no_grad()
@torch.inference_mode()
def apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent):
return opControlNetApplyAdvanced.apply_controlnet(positive=positive, negative=negative, control_net=control_net,
image=image, strength=strength, start_percent=start_percent, end_percent=end_percent)
@torch.no_grad()
@torch.inference_mode()
def load_model(ckpt_filename):
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=path_embeddings)
unet.model_options['sampler_cfg_function'] = patched_sampler_cfg_function
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision, filename=ckpt_filename)
@torch.no_grad()
@torch.inference_mode()
def generate_empty_latent(width=1024, height=1024, batch_size=1):
return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]
@torch.no_grad()
@torch.inference_mode()
def decode_vae(vae, latent_image, tiled=False):
if tiled:
return opVAEDecodeTiled.decode(samples=latent_image, vae=vae, tile_size=512)[0]
else:
return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
@torch.no_grad()
@torch.inference_mode()
def encode_vae(vae, pixels, tiled=False):
if tiled:
return opVAEEncodeTiled.encode(pixels=pixels, vae=vae, tile_size=512)[0]
else:
return opVAEEncode.encode(pixels=pixels, vae=vae)[0]
@torch.no_grad()
@torch.inference_mode()
def encode_vae_inpaint(vae, pixels, mask):
assert mask.ndim == 3 and pixels.ndim == 4
assert mask.shape[-1] == pixels.shape[-2]
assert mask.shape[-2] == pixels.shape[-3]
w = mask.round()[..., None]
pixels = pixels * (1 - w) + 0.5 * w
latent = vae.encode(pixels)
B, C, H, W = latent.shape
latent_mask = mask[:, None, :, :]
latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round()
latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round()
return latent, latent_mask
class VAEApprox(torch.nn.Module):
def __init__(self):
super(VAEApprox, self).__init__()
self.conv1 = torch.nn.Conv2d(4, 8, (7, 7))
self.conv2 = torch.nn.Conv2d(8, 16, (5, 5))
self.conv3 = torch.nn.Conv2d(16, 32, (3, 3))
self.conv4 = torch.nn.Conv2d(32, 64, (3, 3))
self.conv5 = torch.nn.Conv2d(64, 32, (3, 3))
self.conv6 = torch.nn.Conv2d(32, 16, (3, 3))
self.conv7 = torch.nn.Conv2d(16, 8, (3, 3))
self.conv8 = torch.nn.Conv2d(8, 3, (3, 3))
self.current_type = None
def forward(self, x):
extra = 11
x = torch.nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
x = torch.nn.functional.pad(x, (extra, extra, extra, extra))
for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8]:
x = layer(x)
x = torch.nn.functional.leaky_relu(x, 0.1)
return x
VAE_approx_models = {}
@torch.no_grad()
@torch.inference_mode()
def get_previewer(model):
global VAE_approx_models
from modules.config import path_vae_approx
is_sdxl = isinstance(model.model.latent_format, fcbh.latent_formats.SDXL)
vae_approx_filename = os.path.join(path_vae_approx, 'xlvaeapp.pth' if is_sdxl else 'vaeapp_sd15.pth')
if vae_approx_filename in VAE_approx_models:
VAE_approx_model = VAE_approx_models[vae_approx_filename]
else:
sd = torch.load(vae_approx_filename, map_location='cpu')
VAE_approx_model = VAEApprox()
VAE_approx_model.load_state_dict(sd)
del sd
VAE_approx_model.eval()
if fcbh.model_management.should_use_fp16():
VAE_approx_model.half()
VAE_approx_model.current_type = torch.float16
else:
VAE_approx_model.float()
VAE_approx_model.current_type = torch.float32
VAE_approx_model.to(fcbh.model_management.get_torch_device())
VAE_approx_models[vae_approx_filename] = VAE_approx_model
@torch.no_grad()
@torch.inference_mode()
def preview_function(x0, step, total_steps):
with torch.no_grad():
x_sample = x0.to(VAE_approx_model.current_type)
x_sample = VAE_approx_model(x_sample) * 127.5 + 127.5
x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')[0]
x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8)
return x_sample
return preview_function
@torch.no_grad()
@torch.inference_mode()
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1,
previewer_start=None, previewer_end=None, sigmas=None, noise_mean=None):
if sigmas is not None:
sigmas = sigmas.clone().to(fcbh.model_management.get_torch_device())
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = fcbh.sample.prepare_noise(latent_image, seed, batch_inds)
if isinstance(noise_mean, torch.Tensor):
noise = noise + noise_mean - torch.mean(noise, dim=1, keepdim=True)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
previewer = get_previewer(model)
if previewer_start is None:
previewer_start = 0
if previewer_end is None:
previewer_end = steps
def callback(step, x0, x, total_steps):
fcbh.model_management.throw_exception_if_processing_interrupted()
y = None
if previewer is not None and not modules.advanced_parameters.disable_preview:
y = previewer(x0, previewer_start + step, previewer_end)
if callback_function is not None:
callback_function(previewer_start + step, x0, x, previewer_end, y)
disable_pbar = False
modules.sample_hijack.current_refiner = refiner
modules.sample_hijack.refiner_switch_step = refiner_switch
fcbh.samplers.sample = modules.sample_hijack.sample_hacked
try:
samples = fcbh.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step,
last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback,
disable_pbar=disable_pbar, seed=seed, sigmas=sigmas)
out = latent.copy()
out["samples"] = samples
finally:
modules.sample_hijack.current_refiner = None
return out
@torch.no_grad()
@torch.inference_mode()
def pytorch_to_numpy(x):
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
@torch.no_grad()
@torch.inference_mode()
def numpy_to_pytorch(x):
y = x.astype(np.float32) / 255.0
y = y[None]
y = np.ascontiguousarray(y.copy())
y = torch.from_numpy(y).float()
return y
|