Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,268 Bytes
24628d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import numpy as np
from .utils import process_attn, calc_attn_score
class AttentionDetector():
def __init__(self, model, pos_examples=None, neg_examples=None, use_token="first", instruction="Say xxxxxx", threshold=0.5):
self.name = "attention"
self.attn_func = "normalize_sum"
self.model = model
self.important_heads = model.important_heads
self.instruction = instruction
self.use_token = use_token
self.threshold = threshold
def attn2score(self, attention_maps, input_range):
if self.use_token == "first":
attention_maps = [attention_maps[0]]
scores = []
for attention_map in attention_maps:
heatmap = process_attn(
attention_map, input_range, self.attn_func)
score = calc_attn_score(heatmap, self.important_heads)
scores.append(score)
return sum(scores) if len(scores) > 0 else 0
def detect(self, data_prompt):
_, _, attention_maps, _, input_range, _ = self.model.inference(
self.instruction, data_prompt, max_output_tokens=1)
focus_score = self.attn2score(attention_maps, input_range)
return bool(focus_score <= self.threshold), {"focus_score": focus_score}
|