File size: 5,123 Bytes
12c4198
 
65b6e6f
 
 
3f8e7a3
65b6e6f
 
3f8e7a3
65b6e6f
3f8e7a3
 
 
 
65b6e6f
3f8e7a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b6e6f
3f8e7a3
 
 
 
 
 
65b6e6f
3f8e7a3
65b6e6f
 
 
 
3f8e7a3
65b6e6f
3f8e7a3
65b6e6f
3f8e7a3
 
 
 
935873d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c4198
 
935873d
 
12c4198
935873d
 
12c4198
 
935873d
 
12c4198
935873d
12c4198
 
935873d
 
 
 
 
12c4198
935873d
 
 
12c4198
 
935873d
12c4198
 
 
935873d
12c4198
935873d
 
12c4198
 
935873d
 
 
 
12c4198
 
 
 
 
 
 
935873d
12c4198
 
935873d
12c4198
 
 
 
 
 
 
 
 
 
935873d
 
12c4198
 
935873d
12c4198
935873d
12c4198
 
 
935873d
 
 
 
 
12c4198
 
3f8e7a3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import { UMAP } from "https://cdn.jsdelivr.net/npm/umap-js@1.4.0/+esm";

function balancedKMeans(emb, k, beta = 0.01, maxIter = 100) {
    if (!emb.length) return { labels: [], centroids: [] };

    const n = emb.length, d = emb[0].length;
    k = Math.max(2, Math.min(k, n));                 // guard k ≤ n

    let cent = kmeansPlusPlusInit(emb, k);
    const lab = new Uint32Array(n).fill(k);          // start “unassigned”
    const cnt = new Uint32Array(k);

    for (let iter = 0; iter < maxIter; ++iter) {
        let moved = false;
        cnt.fill(0);

        // ── assignment with size penalty ──
        for (let i = 0; i < n; ++i) {
            let best = 0, bestCost = Infinity;
            for (let c = 0; c < k; ++c) {
                let dist = 0;
                for (let j = 0; j < d; ++j) {
                    const diff = emb[i][j] - cent[c][j];
                    dist += diff * diff;
                }
                const sizePenalty = beta * (2 * cnt[c] + 1);
                const cost = dist + sizePenalty;
                if (cost < bestCost) { bestCost = cost; best = c; }
            }
            if (lab[i] !== best) { lab[i] = best; moved = true; }
            cnt[best]++;
        }

        // ── update centroids ──
        cent = Array.from({ length: k }, () => new Array(d).fill(0));
        for (let i = 0; i < n; ++i)
            for (let j = 0; j < d; ++j) cent[lab[i]][j] += emb[i][j];

        for (let c = 0; c < k; ++c)
            if (cnt[c]) {
                const inv = 1 / cnt[c];
                for (let j = 0; j < d; ++j) cent[c][j] *= inv;
            }

        if (!moved) break;                            // converged
    }

    return { labels: Array.from(lab), centroids: cent };
}


function kmeansPlusPlusInit(embeddings, k) {
    const n = embeddings.length;
    const dim = embeddings[0].length;
    const centroids = [embeddings[Math.floor(Math.random() * n)].slice()];
    const d2 = new Float64Array(n);
    for (let c = 1; c < k; ++c) {
        let total = 0;
        for (let i = 0; i < n; ++i) {
            let dist = 0;
            for (let d = 0; d < dim; ++d) {
                const diff = embeddings[i][d] - centroids[c - 1][d];
                dist += diff * diff;
            }
            if (c === 1 || dist < d2[i]) d2[i] = dist;
            total += d2[i];
        }
        let r = Math.random() * total;
        let idx = 0;
        while (r > d2[idx]) r -= d2[idx++];
        centroids.push(embeddings[idx].slice());
    }
    return centroids;
}

export function kmeans(embeddings, k, maxIter = 100) {
    const n = embeddings.length;
    if (n === 0) return { labels: [], centroids: [] };
    k = Math.max(2, Math.min(k, n));
    const dim = embeddings[0].length;
    let centroids = kmeansPlusPlusInit(embeddings, k);
    const labels = new Uint32Array(n);

    const reseed = () => {
        let farIdx = 0;
        let farDist = -1;
        for (let i = 0; i < n; ++i) {
            let min = Infinity;
            for (let c = 0; c < k; ++c) {
                let dist = 0;
                for (let d = 0; d < dim; ++d) {
                    const diff = embeddings[i][d] - centroids[c][d];
                    dist += diff * diff;
                }
                if (dist < min) min = dist;
            }
            if (min > farDist) {
                farDist = min;
                farIdx = i;
            }
        }
        return embeddings[farIdx].slice();
    };

    for (let iter = 0; iter < maxIter; ++iter) {
        let moved = false;
        for (let i = 0; i < n; ++i) {
            let best = 0;
            let bestDist = Infinity;
            for (let c = 0; c < k; ++c) {
                let dist = 0;
                for (let d = 0; d < dim; ++d) {
                    const diff = embeddings[i][d] - centroids[c][d];
                    dist += diff * diff;
                }
                if (dist < bestDist) {
                    bestDist = dist;
                    best = c;
                }
            }
            if (labels[i] !== best) {
                labels[i] = best;
                moved = true;
            }
        }
        const counts = new Uint32Array(k);
        centroids = Array.from({ length: k }, () => new Array(dim).fill(0));
        for (let i = 0; i < n; ++i) {
            counts[labels[i]]++;
            for (let d = 0; d < dim; ++d)
                centroids[labels[i]][d] += embeddings[i][d];
        }
        for (let c = 0; c < k; ++c) {
            if (counts[c] === 0) {
                centroids[c] = reseed();
            } else {
                const inv = 1 / counts[c];
                for (let d = 0; d < dim; ++d) centroids[c][d] *= inv;
            }
        }
        if (!moved) break;
    }
    return { labels: Array.from(labels), centroids };
}

export function runUMAP(embeddings, nNeighbors = 15) {
    const umap = new UMAP({
        nComponents: 2,
        nNeighbors: Math.max(1, Math.min(nNeighbors, embeddings.length - 1)),
        minDist: 0.1
    });
    return umap.fit(embeddings);
}

export { balancedKMeans };