Spaces:
Running
Running
File size: 5,123 Bytes
12c4198 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 65b6e6f 3f8e7a3 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 935873d 12c4198 3f8e7a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import { UMAP } from "https://cdn.jsdelivr.net/npm/umap-js@1.4.0/+esm";
function balancedKMeans(emb, k, beta = 0.01, maxIter = 100) {
if (!emb.length) return { labels: [], centroids: [] };
const n = emb.length, d = emb[0].length;
k = Math.max(2, Math.min(k, n)); // guard k ≤ n
let cent = kmeansPlusPlusInit(emb, k);
const lab = new Uint32Array(n).fill(k); // start “unassigned”
const cnt = new Uint32Array(k);
for (let iter = 0; iter < maxIter; ++iter) {
let moved = false;
cnt.fill(0);
// ── assignment with size penalty ──
for (let i = 0; i < n; ++i) {
let best = 0, bestCost = Infinity;
for (let c = 0; c < k; ++c) {
let dist = 0;
for (let j = 0; j < d; ++j) {
const diff = emb[i][j] - cent[c][j];
dist += diff * diff;
}
const sizePenalty = beta * (2 * cnt[c] + 1);
const cost = dist + sizePenalty;
if (cost < bestCost) { bestCost = cost; best = c; }
}
if (lab[i] !== best) { lab[i] = best; moved = true; }
cnt[best]++;
}
// ── update centroids ──
cent = Array.from({ length: k }, () => new Array(d).fill(0));
for (let i = 0; i < n; ++i)
for (let j = 0; j < d; ++j) cent[lab[i]][j] += emb[i][j];
for (let c = 0; c < k; ++c)
if (cnt[c]) {
const inv = 1 / cnt[c];
for (let j = 0; j < d; ++j) cent[c][j] *= inv;
}
if (!moved) break; // converged
}
return { labels: Array.from(lab), centroids: cent };
}
function kmeansPlusPlusInit(embeddings, k) {
const n = embeddings.length;
const dim = embeddings[0].length;
const centroids = [embeddings[Math.floor(Math.random() * n)].slice()];
const d2 = new Float64Array(n);
for (let c = 1; c < k; ++c) {
let total = 0;
for (let i = 0; i < n; ++i) {
let dist = 0;
for (let d = 0; d < dim; ++d) {
const diff = embeddings[i][d] - centroids[c - 1][d];
dist += diff * diff;
}
if (c === 1 || dist < d2[i]) d2[i] = dist;
total += d2[i];
}
let r = Math.random() * total;
let idx = 0;
while (r > d2[idx]) r -= d2[idx++];
centroids.push(embeddings[idx].slice());
}
return centroids;
}
export function kmeans(embeddings, k, maxIter = 100) {
const n = embeddings.length;
if (n === 0) return { labels: [], centroids: [] };
k = Math.max(2, Math.min(k, n));
const dim = embeddings[0].length;
let centroids = kmeansPlusPlusInit(embeddings, k);
const labels = new Uint32Array(n);
const reseed = () => {
let farIdx = 0;
let farDist = -1;
for (let i = 0; i < n; ++i) {
let min = Infinity;
for (let c = 0; c < k; ++c) {
let dist = 0;
for (let d = 0; d < dim; ++d) {
const diff = embeddings[i][d] - centroids[c][d];
dist += diff * diff;
}
if (dist < min) min = dist;
}
if (min > farDist) {
farDist = min;
farIdx = i;
}
}
return embeddings[farIdx].slice();
};
for (let iter = 0; iter < maxIter; ++iter) {
let moved = false;
for (let i = 0; i < n; ++i) {
let best = 0;
let bestDist = Infinity;
for (let c = 0; c < k; ++c) {
let dist = 0;
for (let d = 0; d < dim; ++d) {
const diff = embeddings[i][d] - centroids[c][d];
dist += diff * diff;
}
if (dist < bestDist) {
bestDist = dist;
best = c;
}
}
if (labels[i] !== best) {
labels[i] = best;
moved = true;
}
}
const counts = new Uint32Array(k);
centroids = Array.from({ length: k }, () => new Array(dim).fill(0));
for (let i = 0; i < n; ++i) {
counts[labels[i]]++;
for (let d = 0; d < dim; ++d)
centroids[labels[i]][d] += embeddings[i][d];
}
for (let c = 0; c < k; ++c) {
if (counts[c] === 0) {
centroids[c] = reseed();
} else {
const inv = 1 / counts[c];
for (let d = 0; d < dim; ++d) centroids[c][d] *= inv;
}
}
if (!moved) break;
}
return { labels: Array.from(labels), centroids };
}
export function runUMAP(embeddings, nNeighbors = 15) {
const umap = new UMAP({
nComponents: 2,
nNeighbors: Math.max(1, Math.min(nNeighbors, embeddings.length - 1)),
minDist: 0.1
});
return umap.fit(embeddings);
}
export { balancedKMeans };
|