File size: 5,838 Bytes
f1d8127
 
 
 
4e66f95
f1d8127
 
 
 
 
 
 
 
 
 
4e66f95
 
 
 
f1d8127
 
 
 
 
 
 
 
 
c62ee55
 
 
 
f1d8127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c62ee55
 
f1d8127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e66f95
f1d8127
 
 
 
 
 
 
 
 
 
 
 
 
4e66f95
 
 
 
35723bb
4e66f95
 
 
 
 
 
7bc6211
4e66f95
 
 
 
 
 
3a81b9e
 
5279027
4e66f95
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d8127
 
 
 
 
 
824a7eb
f1d8127
4e66f95
f1d8127
 
 
 
857eed2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Patch
import io
from PIL import Image, ImageDraw

from transformers import TableTransformerImageProcessor, AutoModelForObjectDetection
import torch

import gradio as gr

# load table detection model
processor = TableTransformerImageProcessor(max_size=800)
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")

# load table structure recognition model
structure_processor = TableTransformerImageProcessor(max_size=1000)
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-structure-recognition-v1.1-all")


# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(-1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)


def rescale_bboxes(out_bbox, size):
    width, height = size
    boxes = box_cxcywh_to_xyxy(out_bbox)
    boxes = boxes * torch.tensor([width, height, width, height], dtype=torch.float32)
    return boxes


def outputs_to_objects(outputs, img_size, id2label):
    m = outputs.logits.softmax(-1).max(-1)
    pred_labels = list(m.indices.detach().cpu().numpy())[0]
    pred_scores = list(m.values.detach().cpu().numpy())[0]
    pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
    pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)]

    objects = []
    for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
        class_label = id2label[int(label)]
        if not class_label == 'no object':
            objects.append({'label': class_label, 'score': float(score),
                            'bbox': [float(elem) for elem in bbox]})

    return objects


def fig2img(fig):
    """Convert a Matplotlib figure to a PIL Image and return it"""
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    image = Image.open(buf)
    return image


def visualize_detected_tables(img, det_tables):
    plt.imshow(img, interpolation="lanczos")
    fig = plt.gcf()
    fig.set_size_inches(20, 20)
    ax = plt.gca()

    for det_table in det_tables:
        bbox = det_table['bbox']

        if det_table['label'] == 'table':
            facecolor = (1, 0, 0.45)
            edgecolor = (1, 0, 0.45)
            alpha = 0.3
            linewidth = 2
            hatch='//////'
        elif det_table['label'] == 'table rotated':
            facecolor = (0.95, 0.6, 0.1)
            edgecolor = (0.95, 0.6, 0.1)
            alpha = 0.3
            linewidth = 2
            hatch='//////'
        else:
            continue

        rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
                                    edgecolor='none',facecolor=facecolor, alpha=0.1)
        ax.add_patch(rect)
        rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
                                    edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
        ax.add_patch(rect)
        rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
                                    edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
        ax.add_patch(rect)

    plt.xticks([], [])
    plt.yticks([], [])

    legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
                                label='Table', hatch='//////', alpha=0.3),
                        Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
                                label='Table (rotated)', hatch='//////', alpha=0.3)]
    plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
                    fontsize=10, ncol=2)
    plt.gcf().set_size_inches(10, 10)
    plt.axis('off')

    return fig


def detect_and_crop_table(image):
    # prepare image for the model
    pixel_values = processor(image, return_tensors="pt").pixel_values

    # forward pass
    with torch.no_grad():
        outputs = model(pixel_values)

    # postprocess to get detected tables
    id2label = model.config.id2label
    id2label[len(model.config.id2label)] = "no object"
    detected_tables = outputs_to_objects(outputs, image.size, id2label)

    # visualize
    # fig = visualize_detected_tables(image, detected_tables)
    # image = fig2img(fig)

    # crop first detected table out of image
    cropped_table = image.crop(detected_tables[0]["bbox"])

    return cropped_table


def recognize_table(image):
    # prepare image for the model
    pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values

    # forward pass
    with torch.no_grad():
        outputs = structure_model(pixel_values)

    # postprocess to get individual elements
    id2label = structure_model.config.id2label
    id2label[len(structure_model.config.id2label)] = "no object"
    cells = outputs_to_objects(outputs, image.size, id2label)

    # visualize cells on cropped table
    draw = ImageDraw.Draw(image)

    for cell in cells:
        draw.rectangle(cell["bbox"], outline="red")
        
    return image


def process_pdf(image):
    cropped_table = detect_and_crop_table(image)

    image = recognize_table(cropped_table)

    return image
    

title = "Demo: table detection with Table Transformer"
description = "Demo for the Table Transformer (TATR)."
examples =[['image.png']]

app = gr.Interface(fn=process_pdf, 
                     inputs=gr.Image(type="pil"), 
                     outputs=gr.Image(type="pil", label="Detected table"),
                     title=title,
                     description=description,
                     examples=examples)
app.queue()
app.launch(debug=True)