File size: 65,747 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Train a network across multiple GPUs.
"""

import contextlib
import logging
import os
import sys
import time
from argparse import Namespace
from itertools import chain
from typing import Any, Dict, List

import torch
from omegaconf import OmegaConf

from fairseq import checkpoint_utils, models, optim, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics
from fairseq.models.ema import build_ema
from fairseq.nan_detector import NanDetector
from fairseq.optim import lr_scheduler
from fairseq.utils import safe_hasattr


logger = logging.getLogger(__name__)


class Trainer(object):
    """Main class for data parallel training.

    This class supports synchronous distributed data parallel training,
    where multiple workers each have a full model replica and gradients
    are accumulated across workers before each update. We use
    :class:`~torch.nn.parallel.DistributedDataParallel` to handle
    communication of the gradients across workers.
    """

    def __init__(self, cfg: FairseqConfig, task, model, criterion, quantizer=None):

        if isinstance(cfg, Namespace):
            logger.warning(
                "argparse.Namespace configuration is deprecated! Automatically converting to OmegaConf"
            )
            cfg = convert_namespace_to_omegaconf(cfg)

        self.cfg = cfg
        self.task = task

        # catalog shared parameters
        shared_params = _catalog_shared_params(model)
        self.tpu = cfg.common.tpu
        self.cuda = torch.cuda.is_available() and not cfg.common.cpu and not self.tpu
        if self.cuda:
            self.device = torch.device("cuda")
        elif self.tpu:
            self.device = utils.get_tpu_device()
        else:
            self.device = torch.device("cpu")

        if self.is_fsdp:
            import fairscale

            if self.cfg.common.bf16:
                raise ValueError(
                    "FullyShardedDataParallel is not compatible with --bf16 or "
                    "--memory-efficient-bf16"
                )
            if self.cfg.distributed_training.zero_sharding != "none":
                raise ValueError(
                    "FullyShardedDataParallel is not compatible with --zero-sharding "
                    "option (it's already built in)"
                )
            if (
                max(self.cfg.optimization.update_freq) > 1
                and fairscale.__version__ < "0.4.0"
            ):
                raise RuntimeError(
                    "Please update to fairscale 0.4.0 or newer when combining "
                    "--update-freq with FullyShardedDataParallel"
                )
        else:
            if (
                hasattr(self.cfg.distributed_training, "cpu_offload")
                and self.cfg.distributed_training.cpu_offload
            ):
                raise ValueError("--cpu-offload requires --ddp-backend=fully_sharded")

        # copy model and criterion to current device/dtype
        self._criterion = criterion
        self._model = model
        if not self.is_fsdp:
            if cfg.common.fp16:
                assert not cfg.common.amp, "Cannot use fp16 and AMP together"
                self._criterion = self._criterion.half()
                self._model = self._model.half()
            elif cfg.common.bf16:
                self._criterion = self._criterion.to(dtype=torch.bfloat16)
                self._model = self._model.to(dtype=torch.bfloat16)
            elif cfg.common.amp:
                self._amp_retries = 0
        if (
            not cfg.distributed_training.pipeline_model_parallel
            # the DistributedFairseqModel wrapper will handle moving to device,
            # so only handle cases which don't use the wrapper
            and not self.use_distributed_wrapper
        ):
            self._criterion = self._criterion.to(device=self.device)
            self._model = self._model.to(device=self.device)
        self.pipeline_model_parallel = cfg.distributed_training.pipeline_model_parallel
        self.last_device = None
        if self.cuda and self.pipeline_model_parallel:
            self.last_device = torch.device(
                cfg.distributed_training.pipeline_devices[-1]
            )

        # check that shared parameters are preserved after device transfer
        for shared_param in shared_params:
            ref = _get_module_by_path(self._model, shared_param[0])
            for path in shared_param[1:]:
                logger.info(
                    "detected shared parameter: {} <- {}".format(shared_param[0], path)
                )
                _set_module_by_path(self._model, path, ref)

        self._dummy_batch = None  # indicates we don't have a dummy batch at first
        self._lr_scheduler = None
        self._num_updates = 0
        self._num_xla_compiles = 0  # for TPUs
        self._optim_history = None
        self._optimizer = None
        self._warn_once = set()
        self._wrapped_criterion = None
        self._wrapped_model = None
        self._ema = None

        # TODO(myleott): support tpu
        if self.cuda and self.data_parallel_world_size > 1:
            self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size)
        else:
            self._grad_norm_buf = None

        self.quantizer = quantizer
        if self.quantizer is not None:
            self.quantizer.set_trainer(self)

        # get detailed cuda environment
        if self.cuda:
            self.cuda_env = utils.CudaEnvironment()
            if self.data_parallel_world_size > 1:
                self.cuda_env_arr = distributed_utils.all_gather_list(
                    self.cuda_env, group=distributed_utils.get_global_group()
                )
            else:
                self.cuda_env_arr = [self.cuda_env]
            if self.data_parallel_rank == 0:
                utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr)
        else:
            self.cuda_env = None
            self.cuda_env_arr = None

        metrics.log_start_time("wall", priority=790, round=0)

        self._start_time = time.time()
        self._previous_training_time = 0
        self._cumulative_training_time = None

    def reinitialize(self):
        """Reinitialize the Trainer, typically after model params change."""
        self._lr_scheduler = None
        self._optimizer = None
        self._wrapped_criterion = None
        self._wrapped_model = None

    @property
    def data_parallel_world_size(self):
        if self.cfg.distributed_training.distributed_world_size == 1:
            return 1
        return distributed_utils.get_data_parallel_world_size()

    @property
    def data_parallel_process_group(self):
        return distributed_utils.get_data_parallel_group()

    @property
    def data_parallel_rank(self):
        if self.cfg.distributed_training.distributed_world_size == 1:
            return 0
        return distributed_utils.get_data_parallel_rank()

    @property
    def is_data_parallel_master(self):
        # NOTE: this returns true for all model parallel replicas with data
        # parallel rank 0
        return self.data_parallel_rank == 0

    @property
    def use_distributed_wrapper(self) -> bool:
        return (
            self.data_parallel_world_size > 1 and not self.cfg.optimization.use_bmuf
        ) or (self.is_fsdp and self.cfg.distributed_training.cpu_offload)

    @property
    def should_save_checkpoint_on_current_rank(self) -> bool:
        """Indicates whether to save checkpoints on the current DDP rank."""
        if (
            self.is_fsdp and self.cfg.distributed_training.use_sharded_state
        ) or getattr(self.cfg.model, "base_layers", 0) > 0:
            return True
        else:
            return self.is_data_parallel_master

    @property
    def always_call_state_dict_during_save_checkpoint(self) -> bool:
        if self.is_fsdp and not self.cfg.distributed_training.use_sharded_state:
            # FSDP calls communication collective when consolidating checkpoints
            return True
        else:
            return False

    @property
    def checkpoint_suffix(self) -> str:
        """Suffix to add to the checkpoint file name."""
        if self.is_fsdp and self.cfg.distributed_training.use_sharded_state:
            return self.cfg.checkpoint.checkpoint_suffix + "-shard{0}".format(
                self.data_parallel_rank
            )
        else:
            return self.cfg.checkpoint.checkpoint_suffix or ""

    @property
    def criterion(self):
        if self._wrapped_criterion is None:
            if utils.has_parameters(self._criterion) and self.use_distributed_wrapper:
                self._wrapped_criterion = models.DistributedFairseqModel(
                    self.cfg.distributed_training,
                    self._criterion,
                    process_group=self.data_parallel_process_group,
                    device=self.device,
                )
            else:
                self._wrapped_criterion = self._criterion
        return self._wrapped_criterion

    @property
    def model(self):
        if self._wrapped_model is None:
            if self.use_distributed_wrapper:
                self._wrapped_model = models.DistributedFairseqModel(
                    self.cfg.distributed_training,
                    self._model,
                    process_group=self.data_parallel_process_group,
                    device=self.device,
                )
            else:
                self._wrapped_model = self._model
        return self._wrapped_model

    @property
    def ema(self):
        if self._ema is None:
            self._build_ema()
        return self._ema

    def _build_ema(self):
        if self.cfg.ema.store_ema:
            self._ema = build_ema(self._model, self.cfg.ema, self.device)
            logger.info("Exponential Moving Average Shadow Model is initialized.")

    @property
    def optimizer(self):
        if self._optimizer is None:
            self._build_optimizer()
        return self._optimizer

    @property
    def lr_scheduler(self):
        if self._lr_scheduler is None:
            self._build_optimizer()  # this will initialize self._lr_scheduler
        return self._lr_scheduler

    def _build_optimizer(self):
        params = list(
            filter(
                lambda p: p.requires_grad,
                chain(self.model.parameters(), self.criterion.parameters()),
            )
        )

        if self.is_fsdp and self.cfg.common.fp16:
            # FullyShardedDataParallel always uses MemoryEfficientFP16 wrapper,
            # mostly for the grad scaling. But if we don't have the
            # --memory-efficient-fp16 flag set, then we're effectively doing
            # regular --fp16 and can allow the use of optimizers that would
            # otherwise be unsupported by MemoryEfficientFP16Optimizer.
            allow_unsupported = not self.cfg.common.memory_efficient_fp16
            self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
                self.cfg, params, allow_unsupported=allow_unsupported
            )
        elif self.cfg.common.fp16 or self.cfg.common.bf16 or self.cfg.common.amp:
            if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
                logger.info(
                    "NOTE: your device does NOT support faster training with --fp16 or --amp, "
                    "please switch to FP32 which is likely to be faster"
                )
            if (
                self.cfg.common.memory_efficient_fp16
                or self.cfg.common.memory_efficient_bf16
            ):
                self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
                    self.cfg, params
                )
            elif self.cfg.common.amp:
                self._optimizer = optim.AMPOptimizer.build_optimizer(self.cfg, params)
            else:
                self._optimizer = optim.FP16Optimizer.build_optimizer(self.cfg, params)
        else:
            if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
                logger.info(
                    "NOTE: your device may support faster training with --fp16 or --amp"
                )
            self._optimizer = optim.build_optimizer(self.cfg.optimizer, params)

        if self.is_fsdp:
            assert (
                not self.cfg.optimization.use_bmuf
            ), "--ddp-backend=fully_sharded is not compatible with BMUF"
            assert self._optimizer.supports_flat_params, (
                "--ddp-backend=fully_sharded is only compatible with pointwise "
                "optimizers (e.g., Adam, AdamW, Adadelta, Adamax, SGD, etc.). "
                "However, the sharding will result in slightly different results when "
                "using non-pointwise optimizers (e.g., Adagrad, Adafactor, LAMB)"
            )

        if self.cfg.optimization.use_bmuf:
            self._optimizer = optim.FairseqBMUF(
                self.cfg.bmuf,
                self._optimizer,
            )

        if self.cfg.distributed_training.zero_sharding == "os":
            if (
                self.cfg.common.fp16
                and not self.cfg.common.memory_efficient_fp16
                and not self.cfg.common.memory_efficient_bf16
            ) and not self.cfg.common.fp16_no_flatten_grads:
                raise ValueError(
                    "ZeRO is incomptabile with fp16 and flattened grads. "
                    "Please use --fp16-no-flatten-grads"
                )
            else:
                optim.shard_(self._optimizer, self.data_parallel_process_group)

        # We should initialize the learning rate scheduler immediately after
        # building the optimizer, so that the initial learning rate is set.
        self._lr_scheduler = lr_scheduler.build_lr_scheduler(
            self.cfg.lr_scheduler,
            self.optimizer,
        )
        self._lr_scheduler.step_update(0)

    @property
    def is_fsdp(self):
        return self.cfg.distributed_training.ddp_backend == "fully_sharded"

    def consolidate_optimizer(self):
        """For OSS, we need to consolidate the state dict."""
        if self.cfg.checkpoint.no_save_optimizer_state:
            return
        self._gathered_optim_state = None
        if hasattr(self.optimizer.optimizer, "consolidate_state_dict"):
            self.optimizer.optimizer.consolidate_state_dict()
        elif self.is_fsdp and not self.model.use_sharded_state:
            st = self.model.gather_full_optim_state_dict(
                self.optimizer
            )  # only returns on rank 0
            self._gathered_optim_state = st

    def state_dict(self):
        state_dict = {
            "args": None,  # legacy
            "cfg": (
                OmegaConf.to_container(self.cfg, resolve=True, enum_to_str=True)
                if OmegaConf.is_config(self.cfg)
                else self.cfg
            ),
            "model": self.model.state_dict(),
            "criterion": (
                self.criterion.state_dict()
                if utils.has_parameters(self.criterion)
                else None
            ),
            "optimizer_history": (self._optim_history or [])
            + [
                {
                    "criterion_name": self.get_criterion().__class__.__name__,
                    "optimizer_name": self.optimizer.__class__.__name__,
                    "lr_scheduler_state": self.lr_scheduler.state_dict(),
                    "num_updates": self.get_num_updates(),
                }
            ],
            "task_state": self.task.state_dict() if self.task is not None else {},
            "extra_state": {
                "metrics": metrics.state_dict(),
                "previous_training_time": self.cumulative_training_time(),
            },
        }
        if self.cfg.ema.store_ema:
            # Save EMA model state as extra state
            state_dict["extra_state"]["ema"] = self.ema.get_model().state_dict()
            if self.cfg.ema.ema_fp32:
                # Save EMA params in fp32
                state_dict["extra_state"]["ema_fp32_params"] = self.ema.fp32_params
        if not self.cfg.checkpoint.no_save_optimizer_state:
            if self._gathered_optim_state is not None:
                state_dict["last_optimizer_state"] = self._gathered_optim_state
                self._gathered_optim_state = None
            else:
                state_dict["last_optimizer_state"] = self.optimizer.state_dict()
        if self.is_fsdp:
            # save meta data for recombining checkpoint upon loading
            state_dict["fsdp_metadata"] = self.model.local_metadata_dict()
        return state_dict

    def save_checkpoint(self, filename, extra_state):
        """Save all training state in a checkpoint file."""

        logger.info(f"Saving checkpoint to {os.path.abspath(filename)}")
        # call state_dict on all ranks in case it needs internal communication
        state_dict = utils.move_to_cpu(self.state_dict())
        state_dict["extra_state"].update(extra_state)
        if self.should_save_checkpoint_on_current_rank:
            checkpoint_utils.torch_persistent_save(
                state_dict,
                filename,
                async_write=self.cfg.checkpoint.write_checkpoints_asynchronously,
            )
        logger.info(f"Finished saving checkpoint to {os.path.abspath(filename)}")

    def load_checkpoint(
        self,
        filename,
        reset_optimizer=False,
        reset_lr_scheduler=False,
        optimizer_overrides=None,
        reset_meters=False,
    ):
        """
        Load all training state from a checkpoint file.
        rank = 0 will load the checkpoint, and then broadcast it to all
        other ranks.
        """
        extra_state, self._optim_history, last_optim_state = None, [], None

        logger.info(f"Preparing to load checkpoint {filename}")
        is_distributed = self.data_parallel_world_size > 1
        bexists = PathManager.isfile(filename)
        if bexists:
            load_on_all_ranks = (
                self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks
                # TPUs don't support broadcast yet, so load checkpoints
                # on every worker for now
                or self.tpu
                # FSDP requires loading checkpoint shards on all ranks
                or (self.is_fsdp and self.cfg.distributed_training.use_sharded_state)
                or getattr(self.cfg.model, "base_layers", 0) > 0
            )

            if load_on_all_ranks or self.data_parallel_rank == 0:
                state = checkpoint_utils.load_checkpoint_to_cpu(
                    filename, load_on_all_ranks=load_on_all_ranks
                )
                last_optim_state = state.get("last_optimizer_state", None)

                # If doing zero_sharding, do not broadcast global optimizer
                # state. Later we will broadcast sharded states to each rank
                # to avoid memory from exploding.
                if (
                    not load_on_all_ranks
                    and self.cfg.distributed_training.zero_sharding == "os"
                    and "last_optimizer_state" in state
                    and is_distributed
                ):
                    state["last_optimizer_state"] = "SHARDED"
            else:
                last_optim_state = None
                state = None

            if is_distributed and not load_on_all_ranks:
                state = distributed_utils.broadcast_object(
                    state,
                    src_rank=0,
                    group=self.data_parallel_process_group,
                    dist_device=self.device,
                )
                if self.data_parallel_rank > 0:
                    last_optim_state = state.get("last_optimizer_state", None)

            # load model parameters
            try:
                if (
                    "optimizer_history" in state
                    and len(state["optimizer_history"]) > 0
                    and "num_updates" in state["optimizer_history"][-1]
                ):
                    self.model.set_num_updates(
                        state["optimizer_history"][-1]["num_updates"]
                    )

                # this is the code related to AdaPrune
                # In short, it removes redundant heads in multi-head attention module based on heads importance provided
                # For more info, please refer to the paper: https://openreview.net/forum?id=_CMSV7FTzGI
                # The idea of prune in mha can be summarized as
                # Fine tune model (e.g. roberta encoder) on a certain datasets with regularization
                # After the model is trained. User could use get_reserve_head_index and _adaptive_prune_heads functions to get the top X heads with most importance.
                # Then user uses the rank to prune a new roberta encoder and save the pruned ckpt manually.
                # User will fine tune the the new roberta encoder via the ckpt saved above
                # To get rid of registering different pruned version of Roberta, I use the argument --mha-heads-to-keep to prune the Roberta model into a pruned version which matches the pruned ckpt.
                if (
                    safe_hasattr(self.model, "args")
                    and safe_hasattr(self.model.args, "mha_heads_to_keep")
                    and self.model.args.mha_heads_to_keep != -1
                ):
                    logger.info(
                        f"Prune model: keep {self.model.args.mha_heads_to_keep} heads for each multihead attention module"
                    )
                    for layer in self.model.encoder.sentence_encoder.layers:
                        reserve_head_index = layer.self_attn._get_reserve_head_index(
                            num_heads_to_keep=self.model.args.mha_heads_to_keep
                        )
                        layer.self_attn._adaptive_prune_heads(
                            reserve_head_index=reserve_head_index
                        )
                        layer.self_attn._set_skip_embed_dim_check()
                    logger.info(self.model)
                # this is the code related to AdaPrune
                # In short, it removes redundant units in feedforward layer in each transformer layer based on importance
                # For more info, please refer to the paper: https://openreview.net/forum?id=_CMSV7FTzGI
                # The idea of prune in ffn can be summarized as
                # Fine tune model (e.g. roberta encoder) on a certain datasets with regularization
                # After the model is trained. User could use _get_fc_rank and _prune_fc_layer functions to get the top X units with most importance.
                # Then user uses the rank to prune a new roberta encoder and save the pruned ckpt manually.
                # User will fine tune the the new roberta encoder via the ckpt saved above
                # To get rid of registering different pruned version of Roberta, I use the argument --ffn-blocks-to-remove to prune the Roberta model into a pruned version which matches the pruned ckpt.
                if (
                    safe_hasattr(self.model, "args")
                    and safe_hasattr(self.model.args, "ffn_blocks_to_remove")
                    and self.model.args.ffn_blocks_to_remove != -1
                ):
                    logger.info(
                        f"Prune model: remove {self.model.args.ffn_blocks_to_remove} ffn blocks for each transformer layer"
                    )
                    for layer in self.model.encoder.sentence_encoder.layers:
                        remove_index = layer._get_fc_rank(
                            remove_num=self.model.args.ffn_blocks_to_remove
                        )
                        layer._prune_fc_layer(remove_index=remove_index)
                    logger.info(self.model)

                self.model.load_state_dict(
                    state["model"], strict=True, model_cfg=self.cfg.model
                )
                # save memory for later steps
                del state["model"]
                if utils.has_parameters(self.get_criterion()):
                    self.get_criterion().load_state_dict(
                        state["criterion"], strict=True
                    )
                    del state["criterion"]

            except Exception:
                raise Exception(
                    "Cannot load model parameters from checkpoint {}; "
                    "please ensure that the architectures match.".format(filename)
                )
            extra_state = state["extra_state"]
            self._optim_history = state["optimizer_history"]

        if last_optim_state is not None and not reset_optimizer:
            # rebuild optimizer after loading model, since params may have changed
            self._build_optimizer()

            # only reload optimizer and lr_scheduler if they match
            last_optim = self._optim_history[-1]
            assert (
                last_optim["criterion_name"] == self.get_criterion().__class__.__name__
            ), f"Criterion does not match; please reset the optimizer (--reset-optimizer). {last_optim['criterion_name']} vs {self.get_criterion().__class__.__name__}"
            assert (
                last_optim["optimizer_name"] == self.optimizer.__class__.__name__
            ), f"Optimizer does not match; please reset the optimizer (--reset-optimizer). {last_optim['optimizer_name']} vs {self.optimizer.__class__.__name__}"

            if not reset_lr_scheduler:
                self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"])

            if self.is_fsdp and not self.model.use_sharded_state:
                # if use_sharded_state, the last_optim_state is already sharded, skip this
                last_optim_state = self.model.get_shard_from_optim_state_dict(
                    last_optim_state
                )
            elif not load_on_all_ranks and is_distributed:
                last_optim_state = self.optimizer.broadcast_global_state_dict(
                    last_optim_state
                )

            self.optimizer.load_state_dict(last_optim_state, optimizer_overrides)

            self.set_num_updates(last_optim["num_updates"])

        if extra_state is not None:
            itr_state = extra_state["train_iterator"]
            epoch = itr_state["epoch"]

            if "previous_training_time" in extra_state:
                self._previous_training_time = extra_state["previous_training_time"]
                self._start_time = time.time()

            self.lr_step(epoch)

            if (
                itr_state.get("version", 1) >= 2
                and itr_state["iterations_in_epoch"] == 0
            ):
                # reset meters at start of epoch
                reset_meters = True

            if "metrics" in extra_state and not reset_meters:
                metrics.load_state_dict(extra_state["metrics"])

                # reset TimeMeters, since their start times don't make sense anymore
                for meter in metrics.get_meters("default"):
                    if isinstance(meter, meters.TimeMeter):
                        meter.reset()

            if self.cfg.ema.store_ema:
                if "ema" not in extra_state:
                    logger.warn(
                        "EMA not found in checkpoint. But store_ema is True. "
                        "EMA is re-initialized from checkpoint."
                    )
                    self.ema.restore(
                        state["model"], build_fp32_params=self.cfg.ema.ema_fp32
                    )
                else:
                    logger.info("Loading EMA from checkpoint")
                    self.ema.restore(extra_state["ema"], build_fp32_params=False)

                    if self.cfg.ema.ema_fp32:
                        if "ema_fp32_params" in extra_state:
                            logger.info("Loading EMA fp32 params from checkpoint")
                            self.ema.build_fp32_params(extra_state["ema_fp32_params"])
                        else:
                            logger.info(
                                "Building EMA fp32 params from EMA model in checkpoint"
                            )
                            self.ema.build_fp32_params()

            logger.info(
                "Loaded checkpoint {} (epoch {} @ {} updates)".format(
                    filename, epoch, self.get_num_updates()
                )
            )

        else:
            logger.info("No existing checkpoint found {}".format(filename))

        return extra_state

    def get_train_iterator(
        self,
        epoch,
        combine=True,
        load_dataset=True,
        data_selector=None,
        shard_batch_itr=True,
        disable_iterator_cache=False,
    ):
        """Return an EpochBatchIterator over the training set for a given epoch."""
        if load_dataset:
            logger.info("loading train data for epoch {}".format(epoch))
            self.task.load_dataset(
                self.cfg.dataset.train_subset,
                epoch=epoch,
                combine=combine,
                data_selector=data_selector,
                tpu=self.tpu,
            )
        batch_iterator = self.task.get_batch_iterator(
            dataset=self.task.dataset(self.cfg.dataset.train_subset),
            max_tokens=self.cfg.dataset.max_tokens,
            max_sentences=self.cfg.dataset.batch_size,
            max_positions=utils.resolve_max_positions(
                self.task.max_positions(),
                self.model.max_positions(),
                self.cfg.dataset.max_tokens,
            ),
            ignore_invalid_inputs=True,
            required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
            seed=(self.cfg.common.seed + epoch)
            if self.cfg.dataset.update_ordered_indices_seed
            else self.cfg.common.seed,
            num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
            shard_id=self.data_parallel_rank if shard_batch_itr else 0,
            num_workers=self.cfg.dataset.num_workers,
            epoch=epoch,
            data_buffer_size=self.cfg.dataset.data_buffer_size,
            disable_iterator_cache=disable_iterator_cache,
            skip_remainder_batch=self.cfg.optimization.skip_remainder_batch,
            grouped_shuffling=self.cfg.dataset.grouped_shuffling,
            update_epoch_batch_itr=self.cfg.dataset.update_epoch_batch_itr,
        )
        self.reset_dummy_batch(batch_iterator.first_batch)
        return batch_iterator

    def get_valid_iterator(
        self,
        subset,
        disable_iterator_cache=False,
    ):
        """Return an EpochBatchIterator over given validation subset for a given epoch."""
        batch_iterator = self.task.get_batch_iterator(
            dataset=self.task.dataset(subset),
            max_tokens=self.cfg.dataset.max_tokens_valid,
            max_sentences=self.cfg.dataset.batch_size_valid,
            max_positions=utils.resolve_max_positions(
                self.task.max_positions(),
                self.model.max_positions(),
            ),
            ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
            seed=self.cfg.common.seed,
            num_shards=self.data_parallel_world_size,
            shard_id=self.data_parallel_rank,
            num_workers=self.cfg.dataset.num_workers,
            # always pass a fixed "epoch" to keep validation data consistent
            # across training epochs
            epoch=1,
            data_buffer_size=self.cfg.dataset.data_buffer_size,
            disable_iterator_cache=disable_iterator_cache,
            skip_remainder_batch=False,
        )
        self.reset_dummy_batch(batch_iterator.first_batch)
        return batch_iterator

    def begin_epoch(self, epoch):
        """Called at the beginning of each epoch."""
        logger.info("begin training epoch {}".format(epoch))

        self.lr_step_begin_epoch(epoch)

        if self.quantizer is not None:
            self.quantizer.begin_epoch(epoch)

        # task specific setup per epoch
        self.task.begin_epoch(epoch, self.get_model())

        if self.tpu:
            import torch_xla.core.xla_model as xm

            xm.rendezvous("begin_epoch")  # wait for all workers
            xm.mark_step()

    def begin_valid_epoch(self, epoch):
        """Called at the beginning of each validation epoch."""

        # task specific setup per validation epoch
        self.task.begin_valid_epoch(epoch, self.get_model())

    def reset_dummy_batch(self, batch):
        self._dummy_batch = batch

    @metrics.aggregate("train")
    def train_step(self, samples, raise_oom=False):
        """Do forward, backward and parameter update."""
        self._set_seed()
        self.model.train()
        self.criterion.train()
        self.zero_grad()

        metrics.log_start_time("train_wall", priority=800, round=0)

        # If EMA is enabled through store_ema=True
        # and task.uses_ema is True, pass the EMA model as a keyword
        # argument to the task.
        extra_kwargs = {}
        if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
            extra_kwargs["ema_model"] = self.ema.get_model()

        # forward and backward pass
        logging_outputs, sample_size, ooms = [], 0, 0
        for i, sample in enumerate(samples):  # delayed update loop
            sample, is_dummy_batch = self._prepare_sample(sample)

            def maybe_no_sync():
                """
                Whenever *samples* contains more than one mini-batch, we
                want to accumulate gradients locally and only call
                all-reduce in the last backwards pass.
                """
                if (
                    self.data_parallel_world_size > 1
                    and hasattr(self.model, "no_sync")
                    and i < len(samples) - 1
                    # The no_sync context manager results in increased memory
                    # usage with FSDP, since full-size gradients will be
                    # accumulated on each GPU. It's typically a better tradeoff
                    # to do the extra communication with FSDP.
                    and not self.is_fsdp
                ):
                    return self.model.no_sync()
                else:
                    return contextlib.ExitStack()  # dummy contextmanager

            try:
                with maybe_no_sync():
                    # forward and backward
                    loss, sample_size_i, logging_output = self.task.train_step(
                        sample=sample,
                        model=self.model,
                        criterion=self.criterion,
                        optimizer=self.optimizer,
                        update_num=self.get_num_updates(),
                        ignore_grad=is_dummy_batch,
                        **extra_kwargs,
                    )
                    del loss

                logging_outputs.append(logging_output)
                sample_size += sample_size_i

                # emptying the CUDA cache after the first step can
                # reduce the chance of OOM
                if self.cuda and self.get_num_updates() == 0:
                    torch.cuda.empty_cache()
            except RuntimeError as e:
                if "out of memory" in str(e):
                    self._log_oom(e)
                    if raise_oom:
                        raise e
                    logger.warning(
                        "attempting to recover from OOM in forward/backward pass"
                    )
                    ooms += 1
                    self.zero_grad()
                    if self.cuda:
                        torch.cuda.empty_cache()
                    if self.cfg.distributed_training.distributed_world_size == 1:
                        return None
                else:
                    raise e
            except Exception:
                self.consolidate_optimizer()
                self.save_checkpoint(
                    os.path.join(self.cfg.checkpoint.save_dir, "crash.pt"), {}
                )
                raise

            if self.tpu and i < len(samples) - 1:
                # tpu-comment: every XLA operation before marking step is
                # appended to the IR graph, and processing too many batches
                # before marking step can lead to OOM errors.
                # To handle gradient accumulation use case, we explicitly
                # mark step here for every forward pass without a backward pass
                self._xla_markstep_and_send_to_cpu()

        if is_dummy_batch:
            if torch.is_tensor(sample_size):
                sample_size.zero_()
            else:
                sample_size *= 0.0

        if torch.is_tensor(sample_size):
            sample_size = sample_size.float()
        else:
            sample_size = float(sample_size)

        # gather logging outputs from all replicas
        if self._sync_stats():
            train_time = self._local_cumulative_training_time()
            (
                logging_outputs,
                (
                    sample_size,
                    ooms,
                    total_train_time,
                ),
            ) = self._aggregate_logging_outputs(
                logging_outputs, sample_size, ooms, train_time, ignore=is_dummy_batch
            )
            self._cumulative_training_time = (
                total_train_time / self.data_parallel_world_size
            )

        overflow = False
        try:
            with torch.autograd.profiler.record_function("reduce-grads"):
                # reduce gradients across workers
                self.optimizer.all_reduce_grads(self.model)
                if utils.has_parameters(self.criterion):
                    self.optimizer.all_reduce_grads(self.criterion)

            with torch.autograd.profiler.record_function("multiply-grads"):
                # multiply gradients by (data_parallel_size / sample_size) since
                # DDP normalizes by the number of data parallel workers for
                # improved fp16 precision.
                # Thus we get (sum_of_gradients / sample_size) at the end.
                # In case of fp16, this step also undoes loss scaling.
                # (Debugging note: Some optimizers perform this scaling on the
                # fly, so inspecting model.parameters() or optimizer.params may
                # still show the original, unscaled gradients.)
                numer = (
                    self.data_parallel_world_size
                    if not self.cfg.optimization.use_bmuf or self._sync_stats()
                    else 1
                )
                self.optimizer.multiply_grads(numer / (sample_size or 1.0))
                # Note: (sample_size or 1.0) handles the case of a zero gradient, in a
                # way that avoids CPU/device transfers in case sample_size is a GPU or
                # TPU object. The assumption is that the gradient itself is also 0.

            with torch.autograd.profiler.record_function("clip-grads"):
                # clip grads
                grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm)

            # check that grad norms are consistent across workers
            # on tpu check tensor is slow
            if not self.tpu:
                if (
                    not self.cfg.optimization.use_bmuf
                    and self.cfg.distributed_training.ddp_backend != "slowmo"
                ):
                    self._check_grad_norms(grad_norm)
                if not torch.isfinite(grad_norm).all():
                    # in case of AMP, if gradients are Nan/Inf then
                    # optimizer step is still required
                    if self.cfg.common.amp:
                        overflow = True
                    else:
                        # check local gradnorm single GPU case, trigger NanDetector
                        raise FloatingPointError("gradients are Nan/Inf")

            with torch.autograd.profiler.record_function("optimizer"):
                # take an optimization step
                self.task.optimizer_step(
                    self.optimizer, model=self.model, update_num=self.get_num_updates()
                )
                if self.cfg.common.amp and overflow:
                    if self._amp_retries == self.cfg.common.amp_batch_retries:
                        logger.info("AMP: skipping this batch.")
                        self._amp_retries = 0
                    else:
                        self._amp_retries += 1
                        return self.train_step(
                            samples, raise_oom
                        )  # recursion to feed in same batch

        except FloatingPointError:

            self.consolidate_optimizer()
            self.save_checkpoint(
                os.path.join(self.cfg.checkpoint.save_dir, "crash.pt"), {}
            )

            # re-run the forward and backward pass with hooks attached to print
            # out where it fails
            self.zero_grad()
            with NanDetector(self.get_model()):
                for _, sample in enumerate(samples):
                    sample, _ = self._prepare_sample(sample)
                    self.task.train_step(
                        sample,
                        self.model,
                        self.criterion,
                        self.optimizer,
                        self.get_num_updates(),
                        ignore_grad=False,
                        **extra_kwargs,
                    )
            raise
        except OverflowError as e:
            overflow = True
            logger.info(
                f"NOTE: gradient overflow detected, ignoring gradient, {str(e)}"
            )
            grad_norm = torch.tensor(0.0).cuda()
            self.zero_grad()
        except RuntimeError as e:
            if "out of memory" in str(e):
                self._log_oom(e)
                logger.error("OOM during optimization, irrecoverable")
            raise e

        # Some distributed wrappers (e.g., SlowMo) need access to the optimizer
        # after the step
        if hasattr(self.model, "perform_slowmo"):
            self.model.perform_slowmo(
                self.optimizer.optimizer, getattr(self.optimizer, "fp32_params", None)
            )

        logging_output = None
        if not overflow or self.cfg.distributed_training.ddp_backend == "slowmo":
            self.set_num_updates(self.get_num_updates() + 1)

            if self.cfg.ema.store_ema:
                # Step EMA forward with new model.
                self.ema.step(
                    self.get_model(),
                    self.get_num_updates(),
                )
                metrics.log_scalar(
                    "ema_decay",
                    self.ema.get_decay(),
                    priority=10000,
                    round=5,
                    weight=0,
                )

            if self.tpu:
                import torch_xla.core.xla_model as xm

                # mark step on TPUs
                self._xla_markstep_and_send_to_cpu()

                # only log stats every log_interval steps
                # this causes wps to be misreported when log_interval > 1
                logging_output = {}
                if self.get_num_updates() % self.cfg.common.log_interval == 0:
                    # log memory usage
                    mem_info = xm.get_memory_info(self.device)
                    gb_free = mem_info["kb_free"] / 1024 / 1024
                    gb_total = mem_info["kb_total"] / 1024 / 1024
                    metrics.log_scalar(
                        "gb_free", gb_free, priority=1500, round=1, weight=0
                    )
                    metrics.log_scalar(
                        "gb_total", gb_total, priority=1600, round=1, weight=0
                    )
                    logging_outputs = self._xla_markstep_and_send_to_cpu(
                        logging_outputs
                    )
                    logging_output = self._reduce_and_log_stats(
                        logging_outputs, sample_size, grad_norm
                    )

                # log whenever there's an XLA compilation, since these
                # slow down training and may indicate opportunities for
                # optimization
                self._check_xla_compilation()
            else:
                if self.cuda and self.cuda_env is not None:
                    # log minimum free memory over the iteration
                    gb_used = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
                    torch.cuda.reset_peak_memory_stats()
                    gb_free = self.cuda_env.total_memory_in_GB - gb_used
                    metrics.log_scalar(
                        "gb_free", gb_free, priority=1500, round=1, weight=0
                    )

                # log stats
                logging_output = self._reduce_and_log_stats(
                    logging_outputs, sample_size, grad_norm
                )

                # clear CUDA cache to reduce memory fragmentation
                if (
                    self.cuda
                    and self.cfg.common.empty_cache_freq > 0
                    and (
                        (self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
                        % self.cfg.common.empty_cache_freq
                    )
                    == 0
                ):
                    torch.cuda.empty_cache()

        if self.cfg.common.fp16 or self.cfg.common.amp:
            metrics.log_scalar(
                "loss_scale",
                (
                    self.optimizer.scaler.loss_scale
                    if self.cfg.common.fp16
                    else self.optimizer.scaler.get_scale()
                ),
                priority=700,
                round=4,
                weight=0,
            )

        metrics.log_stop_time("train_wall")
        return logging_output

    @metrics.aggregate("valid")
    def valid_step(self, sample, raise_oom=False):
        """Do forward pass in evaluation mode."""
        if self.tpu:
            import torch_xla.core.xla_model as xm

            xm.rendezvous("valid_step")  # wait for all workers

        # If EMA is enabled through store_ema=True
        # and task.uses_ema is True, pass the EMA model as a keyword
        # argument to the task.
        extra_kwargs = {}
        if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
            extra_kwargs["ema_model"] = self.ema.get_model()

        with torch.no_grad():
            self.model.eval()
            self.criterion.eval()

            sample, is_dummy_batch = self._prepare_sample(sample)

            try:
                _loss, sample_size, logging_output = self.task.valid_step(
                    sample, self.model, self.criterion, **extra_kwargs
                )
            except RuntimeError as e:
                if "out of memory" in str(e):
                    self._log_oom(e)
                    if not raise_oom:
                        logger.warning(
                            "ran out of memory in validation step, retrying batch"
                        )
                        for p in self.model.parameters():
                            if p.grad is not None:
                                p.grad = None  # free some memory
                        if self.cuda:
                            torch.cuda.empty_cache()
                        return self.valid_step(sample, raise_oom=True)
                raise e

            logging_outputs = [logging_output]
            if is_dummy_batch:
                if torch.is_tensor(sample_size):
                    sample_size.zero_()
                else:
                    sample_size *= 0.0

        # gather logging outputs from all replicas
        if self.data_parallel_world_size > 1:
            logging_outputs, (sample_size,) = self._aggregate_logging_outputs(
                logging_outputs,
                sample_size,
                ignore=is_dummy_batch,
            )

        # log validation stats
        if self.tpu:
            logging_outputs = self._xla_markstep_and_send_to_cpu(logging_outputs)
        logging_output = self._reduce_and_log_stats(logging_outputs, sample_size)

        return logging_output

    def zero_grad(self):
        self.optimizer.zero_grad()

    def lr_step_begin_epoch(self, epoch):
        """Adjust the learning rate at the beginning of the epoch."""
        self.lr_scheduler.step_begin_epoch(epoch)
        # prefer updating the LR based on the number of steps
        return self.lr_step_update()

    def lr_step(self, epoch, val_loss=None):
        """Adjust the learning rate at the end of the epoch."""
        self.lr_scheduler.step(epoch, val_loss)
        # prefer updating the LR based on the number of steps
        return self.lr_step_update()

    def lr_step_update(self):
        """Update the learning rate after each update."""
        new_lr = self.lr_scheduler.step_update(self.get_num_updates())
        if isinstance(new_lr, dict):
            for k, v in new_lr.items():
                metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300)
            new_lr = new_lr.get("default", next(iter(new_lr.values())))
        else:
            metrics.log_scalar("lr", new_lr, weight=0, priority=300)
        return new_lr

    def get_lr(self):
        """Get the current learning rate."""
        return self.optimizer.get_lr()

    def get_model(self):
        """Get the (non-wrapped) model instance."""
        return self._model

    def get_criterion(self):
        """Get the (non-wrapped) criterion instance."""
        return self._criterion

    def get_meter(self, name):
        """[deprecated] Get a specific meter by name."""
        from fairseq import meters

        if "get_meter" not in self._warn_once:
            self._warn_once.add("get_meter")
            utils.deprecation_warning(
                "Trainer.get_meter is deprecated. Please use fairseq.metrics instead."
            )

        train_meters = metrics.get_meters("train")
        if train_meters is None:
            train_meters = {}

        if name == "train_loss" and "loss" in train_meters:
            return train_meters["loss"]
        elif name == "train_nll_loss":
            # support for legacy train.py, which assumed this meter is
            # always initialized
            m = train_meters.get("nll_loss", None)
            return m or meters.AverageMeter()
        elif name == "wall":
            # support for legacy train.py, which assumed this meter is
            # always initialized
            m = metrics.get_meter("default", "wall")
            return m or meters.TimeMeter()
        elif name == "wps":
            m = metrics.get_meter("train", "wps")
            return m or meters.TimeMeter()
        elif name in {"valid_loss", "valid_nll_loss"}:
            # support for legacy train.py, which assumed these meters
            # are always initialized
            k = name[len("valid_") :]
            m = metrics.get_meter("valid", k)
            return m or meters.AverageMeter()
        elif name == "oom":
            return meters.AverageMeter()
        elif name in train_meters:
            return train_meters[name]
        return None

    def get_num_updates(self):
        """Get the number of parameters updates."""
        return self._num_updates

    def set_num_updates(self, num_updates):
        """Set the number of parameters updates."""
        self._num_updates = num_updates
        self.lr_step_update()
        if self.quantizer:
            self.quantizer.step_update(self._num_updates)
        metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200)

    def clip_grad_norm(self, clip_norm):
        def agg_norm_fn(total_norm):
            total_norm = total_norm.cuda().float() ** 2
            total_norm = distributed_utils.all_reduce(
                total_norm, group=self.data_parallel_process_group
            )
            return total_norm**0.5

        should_agg_norm = self.is_fsdp and (
            self.data_parallel_process_group is not None
            or torch.distributed.is_initialized()
        )
        return self.optimizer.clip_grad_norm(
            clip_norm, aggregate_norm_fn=agg_norm_fn if should_agg_norm else None
        )

    def cumulative_training_time(self):
        if self._cumulative_training_time is None:
            # single GPU
            return self._local_cumulative_training_time()
        else:
            return self._cumulative_training_time

    def _local_cumulative_training_time(self):
        """Aggregate training time in seconds."""
        return time.time() - self._start_time + self._previous_training_time

    def _fp_convert_sample(self, sample):
        def apply_half(t):
            if t.dtype is torch.float32:
                return t.to(dtype=torch.half)
            return t

        def apply_bfloat16(t):
            if t.dtype is torch.float32:
                return t.to(dtype=torch.bfloat16)
            return t

        if self.cfg.common.fp16:
            sample = utils.apply_to_sample(apply_half, sample)

        if self.cfg.common.bf16:
            sample = utils.apply_to_sample(apply_bfloat16, sample)

        return sample

    def _prepare_sample(self, sample, is_dummy=False):
        if sample == "DUMMY":
            raise Exception(
                "Trying to use an uninitialized 'dummy' batch. This usually indicates "
                "that the total number of batches is smaller than the number of "
                "participating GPUs. Try reducing the batch size or using fewer GPUs."
            )

        if sample is None or len(sample) == 0:
            assert (
                self._dummy_batch is not None and len(self._dummy_batch) > 0
            ), "Invalid dummy batch: {}".format(self._dummy_batch)
            sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True)
            return sample, True

        # Given that PCIe/NVLink bandwidth is significantly smaller than DRAM bandwidth
        # it makes sense to do the format conversion on the CPU and then transfer
        # a smaller buffer to the device. This also saves GPU memory capacity.

        if self.cfg.common.on_cpu_convert_precision:
            sample = self._fp_convert_sample(sample)

        if self.cuda:
            if self.pipeline_model_parallel:
                if "target" in sample:
                    sample["target"] = utils.move_to_cuda(
                        sample["target"], device=self.last_device
                    )
            else:
                sample = utils.move_to_cuda(sample)
        elif self.tpu and is_dummy:
            # the dummy batch may not be on the appropriate device
            sample = utils.move_to_cuda(sample, device=self.device)

        if not self.cfg.common.on_cpu_convert_precision:
            sample = self._fp_convert_sample(sample)

        if self._dummy_batch == "DUMMY":
            self._dummy_batch = sample

        return sample, False

    def _set_seed(self):
        # Set seed based on args.seed and the update number so that we get
        # reproducible results when resuming from checkpoints
        seed = self.cfg.common.seed + self.get_num_updates()
        utils.set_torch_seed(seed)

    def _sync_stats(self):
        # Return True if it's using multiple GPUs and DDP or multiple GPUs with
        # BMUF and it's a bmuf sync with warmup iterations completed before.
        if self.data_parallel_world_size == 1:
            return False
        elif self.cfg.optimization.use_bmuf:
            return (
                self.get_num_updates() + 1
            ) % self.cfg.bmuf.global_sync_iter == 0 and (
                self.get_num_updates() + 1
            ) > self.cfg.bmuf.warmup_iterations
        else:
            return True

    def _log_oom(self, exc):
        msg = "OOM: Ran out of memory with exception: {}".format(exc)
        logger.warning(msg)
        if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"):
            for device_idx in range(torch.cuda.device_count()):
                logger.warning(torch.cuda.memory_summary(device=device_idx))
        sys.stderr.flush()

    def _aggregate_logging_outputs(
        self,
        logging_outputs: List[Dict[str, Any]],
        *extra_stats_to_sum,
        ignore=False,
    ):
        if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()):
            return self._fast_stat_sync_sum(
                logging_outputs, *extra_stats_to_sum, ignore=ignore
            )
        else:
            return self._all_gather_list_sync(
                logging_outputs, *extra_stats_to_sum, ignore=ignore
            )

    def _all_gather_list_sync(
        self,
        logging_outputs: List[Dict[str, Any]],
        *extra_stats_to_sum,
        ignore=False,
    ):
        """
        Sync logging outputs across workers. all_gather_list_sync is
        suitable when logging outputs are complex types.
        """
        if self.tpu:
            raise NotImplementedError
        if ignore:
            logging_outputs = []
        results = list(
            zip(
                *distributed_utils.all_gather_list(
                    [logging_outputs] + list(extra_stats_to_sum),
                    max_size=getattr(self.cfg.common, "all_gather_list_size", 16384),
                    group=self.data_parallel_process_group,
                )
            )
        )
        logging_outputs, extra_stats_to_sum = results[0], results[1:]
        logging_outputs = list(chain.from_iterable(logging_outputs))
        extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum]
        return logging_outputs, extra_stats_to_sum

    def _fast_stat_sync_sum(
        self,
        logging_outputs: List[Dict[str, Any]],
        *extra_stats_to_sum,
        ignore=False,
    ):
        """
        Sync logging outputs across workers. fast_stat_sync_sum is
        faster than all_gather_list_sync, but is only suitable when
        logging outputs are scalars and can be summed. Note that
        *logging_outputs* cannot contain any nested dicts/lists.
        """
        data = {}
        for i, stat in enumerate(extra_stats_to_sum):
            data["extra_stats_" + str(i)] = stat
        if len(logging_outputs) > 0:
            log_keys = list(logging_outputs[0].keys())
            for k in log_keys:
                if not ignore:
                    v = sum(log[k] for log in logging_outputs if k in log)
                else:
                    v = logging_outputs[0][k]
                    v = torch.zeros_like(v) if torch.is_tensor(v) else 0
                data["logging_outputs_" + k] = v
        else:
            log_keys = None

        data = distributed_utils.all_reduce_dict(
            data, device=self.device, group=self.data_parallel_process_group
        )

        extra_stats_to_sum = [
            data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum))
        ]
        if log_keys is not None:
            logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}]
        else:
            logging_outputs = []
        return logging_outputs, extra_stats_to_sum

    def _check_grad_norms(self, grad_norm):
        """Check that grad norms are consistent across workers."""
        if self._grad_norm_buf is not None:
            self._grad_norm_buf.zero_()
            self._grad_norm_buf[self.data_parallel_rank] = grad_norm
            distributed_utils.all_reduce(
                self._grad_norm_buf, group=self.data_parallel_process_group
            )

            def is_consistent(tensor):
                max_abs_diff = torch.max(torch.abs(tensor - tensor[0]))
                return (
                    (
                        torch.isfinite(tensor).all()
                        and (max_abs_diff / (tensor[0] + 1e-6) < 1e-6).all()
                    )
                    or (self.cfg.common.amp and not torch.isfinite(tensor).all())
                    # in case of amp non-finite grads are fine
                )

            if not is_consistent(self._grad_norm_buf):
                pretty_detail = "\n".join(
                    "rank {:3d} = {:.8f}".format(r, n)
                    for r, n in enumerate(self._grad_norm_buf.tolist())
                )
                error_detail = "grad_norm across the workers:\n{}\n".format(
                    pretty_detail
                )
                # use FloatingPointError to trigger NanDetector
                raise FloatingPointError(
                    "Fatal error: gradients are inconsistent between workers. "
                    "Try --ddp-backend=legacy_ddp. "
                    "Or are you mixing up different generation of GPUs in training?"
                    + "\n"
                    + "-" * 80
                    + "\n{}\n".format(error_detail)
                    + "-" * 80
                )

    def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None):
        if grad_norm is not None and (
            not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm)
        ):
            metrics.log_speed("ups", 1.0, priority=100, round=2)
            metrics.log_scalar("gnorm", grad_norm, priority=400, round=3)
            if self.cfg.optimization.clip_norm > 0:
                metrics.log_scalar(
                    "clip",
                    torch.where(
                        grad_norm > self.cfg.optimization.clip_norm,
                        grad_norm.new_tensor(100),
                        grad_norm.new_tensor(0),
                    ),
                    priority=500,
                    round=1,
                )

        with metrics.aggregate() as agg:
            if logging_outputs is not None:
                self.task.reduce_metrics(logging_outputs, self.get_criterion())
                del logging_outputs

            # extra warning for criterions that don't properly log a loss value
            if "loss" not in agg:
                if "loss" not in self._warn_once:
                    self._warn_once.add("loss")
                    logger.warning(
                        "Criterion.reduce_metrics did not log a 'loss' value, "
                        "which may break some functionality"
                    )
                metrics.log_scalar("loss", -1)

            # support legacy interface
            if self.tpu:
                logging_output = {}
            else:
                logging_output = agg.get_smoothed_values()
                logging_output["sample_size"] = sample_size
                for key_to_delete in ["ppl", "wps", "wpb", "bsz"]:
                    if key_to_delete in logging_output:
                        del logging_output[key_to_delete]
            return logging_output

    def _check_xla_compilation(self):
        import torch_xla.debug.metrics as met

        compile_stats = met.metric_data("CompileTime")
        if compile_stats is None:
            return
        num_xla_compiles = compile_stats[0]
        if num_xla_compiles > self._num_xla_compiles:
            logger.warning(
                "XLA compilation detected on device #{}; too many of these can lead "
                "to slow training, but we expect a few in the beginning".format(
                    self.cfg.distributed_training.distributed_rank
                )
            )
        self._num_xla_compiles = num_xla_compiles

    def _xla_markstep_and_send_to_cpu(self, data=None):
        import torch_xla.core.xla_model as xm

        xm.mark_step()
        if data is not None:
            from fairseq.utils import xla_device_to_cpu

            return xla_device_to_cpu(data)


def _catalog_shared_params(module, memo=None, prefix=""):
    if memo is None:
        first_call = True
        memo = {}
    else:
        first_call = False
    for name, param in module._parameters.items():
        param_prefix = prefix + ("." if prefix else "") + name
        if param not in memo:
            memo[param] = []
        memo[param].append(param_prefix)
    for name, m in module._modules.items():
        if m is None:
            continue
        submodule_prefix = prefix + ("." if prefix else "") + name
        _catalog_shared_params(m, memo, submodule_prefix)
    if first_call:
        return [x for x in memo.values() if len(x) > 1]


def _get_module_by_path(module, path):
    path = path.split(".")
    for name in path:
        module = getattr(module, name)
    return module


def _set_module_by_path(module, path, value):
    path = path.split(".")
    for name in path[:-1]:
        module = getattr(module, name)
    setattr(module, path[-1], value)