File size: 8,832 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from . import FairseqDataset, data_utils
def collate(samples, pad_idx, eos_idx, fixed_pad_length=None, pad_to_bsz=None):
if len(samples) == 0:
return {}
def merge(key, is_list=False):
if is_list:
res = []
for i in range(len(samples[0][key])):
res.append(
data_utils.collate_tokens(
[s[key][i] for s in samples],
pad_idx,
eos_idx,
left_pad=False,
pad_to_length=fixed_pad_length,
pad_to_bsz=pad_to_bsz,
)
)
return res
else:
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx,
left_pad=False,
pad_to_length=fixed_pad_length,
pad_to_bsz=pad_to_bsz,
)
src_tokens = merge("source")
if samples[0]["target"] is not None:
is_target_list = isinstance(samples[0]["target"], list)
target = merge("target", is_target_list)
else:
target = src_tokens
return {
"id": torch.LongTensor([s["id"] for s in samples]),
"nsentences": len(samples),
"ntokens": sum(len(s["source"]) for s in samples),
"net_input": {
"src_tokens": src_tokens,
"src_lengths": torch.LongTensor([s["source"].numel() for s in samples]),
},
"target": target,
}
class MonolingualDataset(FairseqDataset):
"""
A wrapper around torch.utils.data.Dataset for monolingual data.
Args:
dataset (torch.utils.data.Dataset): dataset to wrap
sizes (List[int]): sentence lengths
vocab (~fairseq.data.Dictionary): vocabulary
shuffle (bool, optional): shuffle the elements before batching
(default: True).
"""
def __init__(
self,
dataset,
sizes,
src_vocab,
tgt_vocab=None,
add_eos_for_other_targets=False,
shuffle=False,
targets=None,
add_bos_token=False,
fixed_pad_length=None,
pad_to_bsz=None,
src_lang_idx=None,
tgt_lang_idx=None,
):
self.dataset = dataset
self.sizes = np.array(sizes)
self.vocab = src_vocab
self.tgt_vocab = tgt_vocab or src_vocab
self.add_eos_for_other_targets = add_eos_for_other_targets
self.shuffle = shuffle
self.add_bos_token = add_bos_token
self.fixed_pad_length = fixed_pad_length
self.pad_to_bsz = pad_to_bsz
self.src_lang_idx = src_lang_idx
self.tgt_lang_idx = tgt_lang_idx
assert targets is None or all(
t in {"self", "future", "past"} for t in targets
), "targets must be none or one of 'self', 'future', 'past'"
if targets is not None and len(targets) == 0:
targets = None
self.targets = targets
def __getitem__(self, index):
if self.targets is not None:
# *future_target* is the original sentence
# *source* is shifted right by 1 (maybe left-padded with eos)
# *past_target* is shifted right by 2 (left-padded as needed)
#
# Left-to-right language models should condition on *source* and
# predict *future_target*.
# Right-to-left language models should condition on *source* and
# predict *past_target*.
source, future_target, past_target = self.dataset[index]
source, target = self._make_source_target(
source, future_target, past_target
)
else:
source = self.dataset[index]
target = None
source, target = self._maybe_add_bos(source, target)
return {"id": index, "source": source, "target": target}
def __len__(self):
return len(self.dataset)
def _make_source_target(self, source, future_target, past_target):
if self.targets is not None:
target = []
if (
self.add_eos_for_other_targets
and (("self" in self.targets) or ("past" in self.targets))
and source[-1] != self.vocab.eos()
):
# append eos at the end of source
source = torch.cat([source, source.new([self.vocab.eos()])])
if "future" in self.targets:
future_target = torch.cat(
[future_target, future_target.new([self.vocab.pad()])]
)
if "past" in self.targets:
# first token is before the start of sentence which is only used in "none" break mode when
# add_eos_for_other_targets is False
past_target = torch.cat(
[
past_target.new([self.vocab.pad()]),
past_target[1:],
source[-2, None],
]
)
for t in self.targets:
if t == "self":
target.append(source)
elif t == "future":
target.append(future_target)
elif t == "past":
target.append(past_target)
else:
raise Exception("invalid target " + t)
if len(target) == 1:
target = target[0]
else:
target = future_target
return source, self._filter_vocab(target)
def _maybe_add_bos(self, source, target):
if self.add_bos_token:
source = torch.cat([source.new([self.vocab.bos()]), source])
if target is not None:
target = torch.cat([target.new([self.tgt_vocab.bos()]), target])
return source, target
def num_tokens_vec(self, indices):
"""Return the number of tokens for a set of positions defined by indices.
This value is used to enforce ``--max-tokens`` during batching."""
return self.sizes[indices]
def _filter_vocab(self, target):
if len(self.tgt_vocab) != len(self.vocab):
def _filter(target):
mask = target.ge(len(self.tgt_vocab))
if mask.any():
target[mask] = self.tgt_vocab.unk()
return target
if isinstance(target, list):
return [_filter(t) for t in target]
return _filter(target)
return target
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch with the following keys:
- `id` (LongTensor): example IDs in the original input order
- `ntokens` (int): total number of tokens in the batch
- `net_input` (dict): the input to the Model, containing keys:
- `src_tokens` (LongTensor): a padded 2D Tensor of tokens in
the source sentence of shape `(bsz, src_len)`. Padding will
appear on the right.
- `target` (LongTensor): a padded 2D Tensor of tokens in the
target sentence of shape `(bsz, tgt_len)`. Padding will appear
on the right.
"""
return collate(
samples,
self.vocab.pad(),
self.vocab.eos(),
self.fixed_pad_length,
self.pad_to_bsz,
)
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return self.sizes[index]
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return self.sizes[index]
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
self.dataset.prefetch(indices)
|