File size: 15,685 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import numpy as np
import torch
from . import FairseqDataset, data_utils
def collate(
samples,
pad_idx,
eos_idx,
vocab,
left_pad_source=False,
left_pad_target=False,
input_feeding=True,
pad_to_length=None,
):
assert input_feeding
if len(samples) == 0:
return {}
def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=None, # use eos_idx of each sample instead of vocab.eos()
left_pad=left_pad,
move_eos_to_beginning=move_eos_to_beginning,
pad_to_length=pad_to_length,
)
id = torch.LongTensor([s["id"] for s in samples])
src_tokens = merge(
"source",
left_pad=left_pad_source,
pad_to_length=pad_to_length["source"] if pad_to_length is not None else None,
)
# sort by descending source length
src_lengths = torch.LongTensor([s["source"].numel() for s in samples])
src_lengths, sort_order = src_lengths.sort(descending=True)
id = id.index_select(0, sort_order)
src_tokens = src_tokens.index_select(0, sort_order)
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge(
"target",
left_pad=left_pad_target,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
target = target.index_select(0, sort_order)
ntokens = sum(len(s["target"]) for s in samples)
if input_feeding:
# we create a shifted version of targets for feeding the
# previous output token(s) into the next decoder step
prev_output_tokens = merge(
"target",
left_pad=left_pad_target,
move_eos_to_beginning=True,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
prev_output_tokens = prev_output_tokens.index_select(0, sort_order)
else:
ntokens = sum(len(s["source"]) for s in samples)
batch = {
"id": id,
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
"target": target,
"nsentences": samples[0]["source"].size(0),
"sort_order": sort_order,
}
if prev_output_tokens is not None:
batch["net_input"]["prev_output_tokens"] = prev_output_tokens
return batch
class DenoisingDataset(FairseqDataset):
"""
A wrapper around TokenBlockDataset for BART dataset.
Args:
dataset (TokenBlockDataset): dataset to wrap
sizes (List[int]): sentence lengths
vocab (~fairseq.data.Dictionary): vocabulary
mask_idx (int): dictionary index used for masked token
mask_whole_words: only mask whole words. This should be a byte mask
over vocab indices, indicating whether it is the beginning of a
word. We will extend any mask to encompass the whole word.
shuffle (bool, optional): shuffle the elements before batching.
Default: ``True``
seed: Seed for random number generator for reproducibility.
"""
def __init__(
self,
dataset,
sizes,
vocab,
mask_idx,
mask_whole_words,
shuffle,
seed,
mask,
mask_random,
insert,
rotate,
permute_sentences,
bpe,
replace_length,
mask_length,
poisson_lambda,
eos=None,
item_transform_func=None,
):
self.dataset = dataset
self.sizes = sizes
self.vocab = vocab
self.shuffle = shuffle
self.seed = seed
self.mask_idx = mask_idx
self.mask_whole_word = mask_whole_words
self.mask_ratio = mask
self.random_ratio = mask_random
self.insert_ratio = insert
self.rotate_ratio = rotate
self.permute_sentence_ratio = permute_sentences
self.eos = eos if eos is not None else vocab.eos()
self.item_transform_func = item_transform_func
if bpe != "gpt2":
self.full_stop_index = self.vocab.eos()
else:
assert bpe == "gpt2"
self.full_stop_index = self.vocab.index("13")
self.replace_length = replace_length
if self.replace_length not in [-1, 0, 1]:
raise ValueError(f"invalid arg: replace_length={self.replace_length}")
if mask_length not in ["subword", "word", "span-poisson"]:
raise ValueError(f"invalid arg: mask-length={mask_length}")
if mask_length == "subword" and replace_length not in [0, 1]:
raise ValueError(f"if using subwords, use replace-length=1 or 0")
self.mask_span_distribution = None
if mask_length == "span-poisson":
_lambda = poisson_lambda
lambda_to_the_k = 1
e_to_the_minus_lambda = math.exp(-_lambda)
k_factorial = 1
ps = []
for k in range(0, 128):
ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
lambda_to_the_k *= _lambda
k_factorial *= k + 1
if ps[-1] < 0.0000001:
break
ps = torch.FloatTensor(ps)
self.mask_span_distribution = torch.distributions.Categorical(ps)
self.epoch = 0
@property
def can_reuse_epoch_itr_across_epochs(self):
return True # only the noise changes, not item sizes
def set_epoch(self, epoch, **unused):
self.epoch = epoch
def __getitem__(self, index):
with data_utils.numpy_seed(self.seed, self.epoch, index):
tokens = self.dataset[index]
assert tokens[-1] == self.eos
source, target = tokens, tokens.clone()
if self.permute_sentence_ratio > 0.0:
source = self.permute_sentences(source, self.permute_sentence_ratio)
if self.mask_ratio > 0:
source = self.add_whole_word_mask(source, self.mask_ratio)
if self.insert_ratio > 0:
source = self.add_insertion_noise(source, self.insert_ratio)
if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio:
source = self.add_rolling_noise(source)
# there can additional changes to make:
if self.item_transform_func is not None:
source, target = self.item_transform_func(source, target)
assert (source >= 0).all()
assert (source[1:-1] >= 1).all()
assert (source <= len(self.vocab)).all()
assert source[0] == self.vocab.bos()
assert source[-1] == self.eos
return {
"id": index,
"source": source,
"target": target,
}
def __len__(self):
return len(self.dataset)
def permute_sentences(self, source, p=1.0):
full_stops = source == self.full_stop_index
# Pretend it ends with a full stop so last span is a sentence
full_stops[-2] = 1
# Tokens that are full stops, where the previous token is not
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2
result = source.clone()
num_sentences = sentence_ends.size(0)
num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0)
substitutions = torch.randperm(num_sentences)[:num_to_permute]
ordering = torch.arange(0, num_sentences)
ordering[substitutions] = substitutions[torch.randperm(num_to_permute)]
# Ignore <bos> at start
index = 1
for i in ordering:
sentence = source[(sentence_ends[i - 1] if i > 0 else 1) : sentence_ends[i]]
result[index : index + sentence.size(0)] = sentence
index += sentence.size(0)
return result
def word_starts(self, source):
if self.mask_whole_word is not None:
is_word_start = self.mask_whole_word.gather(0, source)
else:
is_word_start = torch.ones(source.size())
is_word_start[0] = 0
is_word_start[-1] = 0
return is_word_start
def add_whole_word_mask(self, source, p):
is_word_start = self.word_starts(source)
num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
num_inserts = 0
if num_to_mask == 0:
return source
if self.mask_span_distribution is not None:
lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))
# Make sure we have enough to mask
cum_length = torch.cumsum(lengths, 0)
while cum_length[-1] < num_to_mask:
lengths = torch.cat(
[
lengths,
self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
],
dim=0,
)
cum_length = torch.cumsum(lengths, 0)
# Trim to masking budget
i = 0
while cum_length[i] < num_to_mask:
i += 1
lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
num_to_mask = i + 1
lengths = lengths[:num_to_mask]
# Handle 0-length mask (inserts) separately
lengths = lengths[lengths > 0]
num_inserts = num_to_mask - lengths.size(0)
num_to_mask -= num_inserts
if num_to_mask == 0:
return self.add_insertion_noise(source, num_inserts / source.size(0))
assert (lengths > 0).all()
else:
lengths = torch.ones((num_to_mask,)).long()
assert is_word_start[-1] == 0
word_starts = is_word_start.nonzero(as_tuple=False)
indices = word_starts[
torch.randperm(word_starts.size(0))[:num_to_mask]
].squeeze(1)
mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
source_length = source.size(0)
assert source_length - 1 not in indices
to_keep = torch.ones(source_length, dtype=torch.bool)
is_word_start[
-1
] = 255 # acts as a long length, so spans don't go over the end of doc
if self.replace_length == 0:
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
1, len(self.vocab), size=(mask_random.sum(),)
)
if self.mask_span_distribution is not None:
assert len(lengths.size()) == 1
assert lengths.size() == indices.size()
lengths -= 1
while indices.size(0) > 0:
assert lengths.size() == indices.size()
lengths -= is_word_start[indices + 1].long()
uncompleted = lengths >= 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
lengths = lengths[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
1, len(self.vocab), size=(mask_random.sum(),)
)
else:
# A bit faster when all lengths are 1
while indices.size(0) > 0:
uncompleted = is_word_start[indices + 1] == 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
1, len(self.vocab), size=(mask_random.sum(),)
)
assert source_length - 1 not in indices
source = source[to_keep]
if num_inserts > 0:
source = self.add_insertion_noise(source, num_inserts / source.size(0))
return source
def add_permuted_noise(self, tokens, p):
num_words = len(tokens)
num_to_permute = math.ceil(((num_words * 2) * p) / 2.0)
substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1
tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]]
return tokens
def add_rolling_noise(self, tokens):
offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1)
tokens = torch.cat(
(tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]),
dim=0,
)
return tokens
def add_insertion_noise(self, tokens, p):
if p == 0.0:
return tokens
num_tokens = len(tokens)
n = int(math.ceil(num_tokens * p))
noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
noise_mask[noise_indices] = 1
result = torch.LongTensor(n + len(tokens)).fill_(-1)
num_random = int(math.ceil(n * self.random_ratio))
result[noise_indices[num_random:]] = self.mask_idx
result[noise_indices[:num_random]] = torch.randint(
low=1, high=len(self.vocab), size=(num_random,)
)
result[~noise_mask] = tokens
assert (result >= 0).all()
return result
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch of data
"""
return collate(
samples, self.vocab.pad(), self.eos, self.vocab, pad_to_length=pad_to_length
)
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return self.sizes[index]
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return self.sizes[index]
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self))
else:
indices = np.arange(len(self))
return indices[np.argsort(self.sizes[indices], kind="mergesort")]
def prefetch(self, indices):
self.src.prefetch(indices)
self.tgt.prefetch(indices)
@property
def supports_prefetch(self):
return (
hasattr(self.src, "supports_prefetch")
and self.src.supports_prefetch
and hasattr(self.tgt, "supports_prefetch")
and self.tgt.supports_prefetch
)
|