File size: 15,685 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import numpy as np
import torch

from . import FairseqDataset, data_utils


def collate(
    samples,
    pad_idx,
    eos_idx,
    vocab,
    left_pad_source=False,
    left_pad_target=False,
    input_feeding=True,
    pad_to_length=None,
):
    assert input_feeding
    if len(samples) == 0:
        return {}

    def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None):
        return data_utils.collate_tokens(
            [s[key] for s in samples],
            pad_idx,
            eos_idx=None,  # use eos_idx of each sample instead of vocab.eos()
            left_pad=left_pad,
            move_eos_to_beginning=move_eos_to_beginning,
            pad_to_length=pad_to_length,
        )

    id = torch.LongTensor([s["id"] for s in samples])
    src_tokens = merge(
        "source",
        left_pad=left_pad_source,
        pad_to_length=pad_to_length["source"] if pad_to_length is not None else None,
    )
    # sort by descending source length
    src_lengths = torch.LongTensor([s["source"].numel() for s in samples])
    src_lengths, sort_order = src_lengths.sort(descending=True)
    id = id.index_select(0, sort_order)
    src_tokens = src_tokens.index_select(0, sort_order)

    prev_output_tokens = None
    target = None
    if samples[0].get("target", None) is not None:
        target = merge(
            "target",
            left_pad=left_pad_target,
            pad_to_length=pad_to_length["target"]
            if pad_to_length is not None
            else None,
        )
        target = target.index_select(0, sort_order)
        ntokens = sum(len(s["target"]) for s in samples)

        if input_feeding:
            # we create a shifted version of targets for feeding the
            # previous output token(s) into the next decoder step
            prev_output_tokens = merge(
                "target",
                left_pad=left_pad_target,
                move_eos_to_beginning=True,
                pad_to_length=pad_to_length["target"]
                if pad_to_length is not None
                else None,
            )
            prev_output_tokens = prev_output_tokens.index_select(0, sort_order)
    else:
        ntokens = sum(len(s["source"]) for s in samples)

    batch = {
        "id": id,
        "ntokens": ntokens,
        "net_input": {
            "src_tokens": src_tokens,
            "src_lengths": src_lengths,
        },
        "target": target,
        "nsentences": samples[0]["source"].size(0),
        "sort_order": sort_order,
    }
    if prev_output_tokens is not None:
        batch["net_input"]["prev_output_tokens"] = prev_output_tokens

    return batch


class DenoisingDataset(FairseqDataset):
    """
    A wrapper around TokenBlockDataset for BART dataset.

    Args:
        dataset (TokenBlockDataset): dataset to wrap
        sizes (List[int]): sentence lengths
        vocab (~fairseq.data.Dictionary): vocabulary
        mask_idx (int): dictionary index used for masked token
        mask_whole_words: only mask whole words. This should be a byte mask
            over vocab indices, indicating whether it is the beginning of a
            word. We will extend any mask to encompass the whole word.
        shuffle (bool, optional): shuffle the elements before batching.
          Default: ``True``
        seed: Seed for random number generator for reproducibility.
    """

    def __init__(
        self,
        dataset,
        sizes,
        vocab,
        mask_idx,
        mask_whole_words,
        shuffle,
        seed,
        mask,
        mask_random,
        insert,
        rotate,
        permute_sentences,
        bpe,
        replace_length,
        mask_length,
        poisson_lambda,
        eos=None,
        item_transform_func=None,
    ):
        self.dataset = dataset

        self.sizes = sizes

        self.vocab = vocab
        self.shuffle = shuffle
        self.seed = seed
        self.mask_idx = mask_idx
        self.mask_whole_word = mask_whole_words
        self.mask_ratio = mask
        self.random_ratio = mask_random
        self.insert_ratio = insert
        self.rotate_ratio = rotate
        self.permute_sentence_ratio = permute_sentences
        self.eos = eos if eos is not None else vocab.eos()
        self.item_transform_func = item_transform_func

        if bpe != "gpt2":
            self.full_stop_index = self.vocab.eos()
        else:
            assert bpe == "gpt2"
            self.full_stop_index = self.vocab.index("13")

        self.replace_length = replace_length
        if self.replace_length not in [-1, 0, 1]:
            raise ValueError(f"invalid arg: replace_length={self.replace_length}")
        if mask_length not in ["subword", "word", "span-poisson"]:
            raise ValueError(f"invalid arg: mask-length={mask_length}")
        if mask_length == "subword" and replace_length not in [0, 1]:
            raise ValueError(f"if using subwords, use replace-length=1 or 0")

        self.mask_span_distribution = None
        if mask_length == "span-poisson":
            _lambda = poisson_lambda

            lambda_to_the_k = 1
            e_to_the_minus_lambda = math.exp(-_lambda)
            k_factorial = 1
            ps = []
            for k in range(0, 128):
                ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
                lambda_to_the_k *= _lambda
                k_factorial *= k + 1
                if ps[-1] < 0.0000001:
                    break
            ps = torch.FloatTensor(ps)
            self.mask_span_distribution = torch.distributions.Categorical(ps)

        self.epoch = 0

    @property
    def can_reuse_epoch_itr_across_epochs(self):
        return True  # only the noise changes, not item sizes

    def set_epoch(self, epoch, **unused):
        self.epoch = epoch

    def __getitem__(self, index):
        with data_utils.numpy_seed(self.seed, self.epoch, index):
            tokens = self.dataset[index]
            assert tokens[-1] == self.eos
            source, target = tokens, tokens.clone()

            if self.permute_sentence_ratio > 0.0:
                source = self.permute_sentences(source, self.permute_sentence_ratio)

            if self.mask_ratio > 0:
                source = self.add_whole_word_mask(source, self.mask_ratio)

            if self.insert_ratio > 0:
                source = self.add_insertion_noise(source, self.insert_ratio)

            if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio:
                source = self.add_rolling_noise(source)
        # there can additional changes to make:
        if self.item_transform_func is not None:
            source, target = self.item_transform_func(source, target)

        assert (source >= 0).all()
        assert (source[1:-1] >= 1).all()
        assert (source <= len(self.vocab)).all()
        assert source[0] == self.vocab.bos()
        assert source[-1] == self.eos
        return {
            "id": index,
            "source": source,
            "target": target,
        }

    def __len__(self):
        return len(self.dataset)

    def permute_sentences(self, source, p=1.0):
        full_stops = source == self.full_stop_index
        # Pretend it ends with a full stop so last span is a sentence
        full_stops[-2] = 1

        # Tokens that are full stops, where the previous token is not
        sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2
        result = source.clone()

        num_sentences = sentence_ends.size(0)
        num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0)
        substitutions = torch.randperm(num_sentences)[:num_to_permute]
        ordering = torch.arange(0, num_sentences)
        ordering[substitutions] = substitutions[torch.randperm(num_to_permute)]

        # Ignore <bos> at start
        index = 1
        for i in ordering:
            sentence = source[(sentence_ends[i - 1] if i > 0 else 1) : sentence_ends[i]]
            result[index : index + sentence.size(0)] = sentence
            index += sentence.size(0)
        return result

    def word_starts(self, source):
        if self.mask_whole_word is not None:
            is_word_start = self.mask_whole_word.gather(0, source)
        else:
            is_word_start = torch.ones(source.size())
        is_word_start[0] = 0
        is_word_start[-1] = 0
        return is_word_start

    def add_whole_word_mask(self, source, p):
        is_word_start = self.word_starts(source)
        num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
        num_inserts = 0
        if num_to_mask == 0:
            return source

        if self.mask_span_distribution is not None:
            lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))

            # Make sure we have enough to mask
            cum_length = torch.cumsum(lengths, 0)
            while cum_length[-1] < num_to_mask:
                lengths = torch.cat(
                    [
                        lengths,
                        self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
                    ],
                    dim=0,
                )
                cum_length = torch.cumsum(lengths, 0)

            # Trim to masking budget
            i = 0
            while cum_length[i] < num_to_mask:
                i += 1
            lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
            num_to_mask = i + 1
            lengths = lengths[:num_to_mask]

            # Handle 0-length mask (inserts) separately
            lengths = lengths[lengths > 0]
            num_inserts = num_to_mask - lengths.size(0)
            num_to_mask -= num_inserts
            if num_to_mask == 0:
                return self.add_insertion_noise(source, num_inserts / source.size(0))

            assert (lengths > 0).all()
        else:
            lengths = torch.ones((num_to_mask,)).long()
        assert is_word_start[-1] == 0
        word_starts = is_word_start.nonzero(as_tuple=False)
        indices = word_starts[
            torch.randperm(word_starts.size(0))[:num_to_mask]
        ].squeeze(1)
        mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio

        source_length = source.size(0)
        assert source_length - 1 not in indices
        to_keep = torch.ones(source_length, dtype=torch.bool)
        is_word_start[
            -1
        ] = 255  # acts as a long length, so spans don't go over the end of doc
        if self.replace_length == 0:
            to_keep[indices] = 0
        else:
            # keep index, but replace it with [MASK]
            source[indices] = self.mask_idx
            source[indices[mask_random]] = torch.randint(
                1, len(self.vocab), size=(mask_random.sum(),)
            )

        if self.mask_span_distribution is not None:
            assert len(lengths.size()) == 1
            assert lengths.size() == indices.size()
            lengths -= 1
            while indices.size(0) > 0:
                assert lengths.size() == indices.size()
                lengths -= is_word_start[indices + 1].long()
                uncompleted = lengths >= 0
                indices = indices[uncompleted] + 1
                mask_random = mask_random[uncompleted]
                lengths = lengths[uncompleted]
                if self.replace_length != -1:
                    # delete token
                    to_keep[indices] = 0
                else:
                    # keep index, but replace it with [MASK]
                    source[indices] = self.mask_idx
                    source[indices[mask_random]] = torch.randint(
                        1, len(self.vocab), size=(mask_random.sum(),)
                    )
        else:
            # A bit faster when all lengths are 1
            while indices.size(0) > 0:
                uncompleted = is_word_start[indices + 1] == 0
                indices = indices[uncompleted] + 1
                mask_random = mask_random[uncompleted]
                if self.replace_length != -1:
                    # delete token
                    to_keep[indices] = 0
                else:
                    # keep index, but replace it with [MASK]
                    source[indices] = self.mask_idx
                    source[indices[mask_random]] = torch.randint(
                        1, len(self.vocab), size=(mask_random.sum(),)
                    )

                assert source_length - 1 not in indices

        source = source[to_keep]

        if num_inserts > 0:
            source = self.add_insertion_noise(source, num_inserts / source.size(0))

        return source

    def add_permuted_noise(self, tokens, p):
        num_words = len(tokens)
        num_to_permute = math.ceil(((num_words * 2) * p) / 2.0)
        substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1
        tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]]
        return tokens

    def add_rolling_noise(self, tokens):
        offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1)
        tokens = torch.cat(
            (tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]),
            dim=0,
        )
        return tokens

    def add_insertion_noise(self, tokens, p):
        if p == 0.0:
            return tokens

        num_tokens = len(tokens)
        n = int(math.ceil(num_tokens * p))

        noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
        noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
        noise_mask[noise_indices] = 1
        result = torch.LongTensor(n + len(tokens)).fill_(-1)

        num_random = int(math.ceil(n * self.random_ratio))
        result[noise_indices[num_random:]] = self.mask_idx
        result[noise_indices[:num_random]] = torch.randint(
            low=1, high=len(self.vocab), size=(num_random,)
        )

        result[~noise_mask] = tokens

        assert (result >= 0).all()
        return result

    def collater(self, samples, pad_to_length=None):
        """Merge a list of samples to form a mini-batch.
        Args:
            samples (List[dict]): samples to collate
        Returns:
            dict: a mini-batch of data
        """
        return collate(
            samples, self.vocab.pad(), self.eos, self.vocab, pad_to_length=pad_to_length
        )

    def num_tokens(self, index):
        """Return the number of tokens in a sample. This value is used to
        enforce ``--max-tokens`` during batching."""
        return self.sizes[index]

    def size(self, index):
        """Return an example's size as a float or tuple. This value is used when
        filtering a dataset with ``--max-positions``."""
        return self.sizes[index]

    def ordered_indices(self):
        """Return an ordered list of indices. Batches will be constructed based
        on this order."""
        if self.shuffle:
            indices = np.random.permutation(len(self))
        else:
            indices = np.arange(len(self))
        return indices[np.argsort(self.sizes[indices], kind="mergesort")]

    def prefetch(self, indices):
        self.src.prefetch(indices)
        self.tgt.prefetch(indices)

    @property
    def supports_prefetch(self):
        return (
            hasattr(self.src, "supports_prefetch")
            and self.src.supports_prefetch
            and hasattr(self.tgt, "supports_prefetch")
            and self.tgt.supports_prefetch
        )