File size: 125,809 Bytes
87c3140
dbaeac5
e91ac58
87c3140
 
e91ac58
93fd830
48bf402
e91ac58
e729f97
87c3140
806953a
 
 
e91ac58
 
dbaeac5
524a99c
 
48bf402
b8abf64
b55e03e
 
b8abf64
 
 
524a99c
b8abf64
 
 
0bf3a45
b55e03e
0bf3a45
 
 
524a99c
0bf3a45
b55e03e
e729f97
87c3140
b8abf64
 
 
 
 
2ca72a2
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
b8abf64
 
 
 
 
 
 
 
 
 
e91ac58
87c3140
e729f97
 
524a99c
 
 
b55e03e
 
 
 
 
 
1cc9cdc
b55e03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567930d
 
 
e223e6f
 
48bf402
e223e6f
567930d
e223e6f
 
 
ca048bb
e223e6f
567930d
48bf402
567930d
 
 
 
 
e223e6f
 
 
 
 
 
 
 
 
 
ca048bb
e223e6f
 
 
ca048bb
 
 
 
 
 
 
 
 
e223e6f
 
ca048bb
e223e6f
 
 
ca048bb
 
 
 
 
e223e6f
 
48130d6
e223e6f
 
 
 
 
 
 
 
 
 
567930d
 
e223e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca048bb
e223e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8abf64
e91ac58
b8abf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
b8abf64
 
 
 
567930d
b8abf64
 
c824976
e223e6f
b8abf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
b8abf64
 
 
 
 
e91ac58
b8abf64
e91ac58
 
0560c52
aedd7d9
567930d
 
aedd7d9
 
 
b8abf64
6d5de38
aedd7d9
 
6d5de38
0560c52
aedd7d9
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
dbaeac5
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
b8abf64
dbaeac5
e91ac58
b8abf64
c824976
 
 
 
 
b8abf64
 
 
 
c824976
 
 
 
b8abf64
e91ac58
 
 
 
 
 
 
 
524a99c
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e729f97
 
87c3140
8883473
 
 
 
 
87c3140
 
 
 
 
 
 
8883473
 
87c3140
 
 
8883473
 
87c3140
 
 
 
 
f2055e5
8883473
1f55e2a
87c3140
8883473
87c3140
8883473
 
 
87c3140
8883473
 
e91ac58
8883473
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aedd7d9
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
e91ac58
7a93196
524a99c
e91ac58
7a93196
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
7a93196
 
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f288f7
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e729f97
7a93196
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48bf402
87c3140
7a93196
 
87c3140
 
 
7a93196
 
48bf402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
7a93196
 
e91ac58
 
 
 
 
 
7a93196
 
87c3140
 
 
e91ac58
 
7a93196
 
e91ac58
b8abf64
e91ac58
 
 
b8abf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
b8abf64
 
 
e91ac58
 
 
87c3140
e91ac58
 
 
 
 
b8abf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
87c3140
e91ac58
 
 
 
 
b8abf64
e91ac58
ae215ea
 
e91ac58
b8abf64
e91ac58
b8abf64
 
 
 
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
 
 
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
ae215ea
b8abf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567930d
 
 
 
 
b8abf64
 
 
 
 
 
 
 
 
 
 
 
87c3140
e91ac58
 
 
 
b8abf64
e91ac58
 
 
b8abf64
e91ac58
 
 
 
b8abf64
e91ac58
 
 
b8abf64
 
e91ac58
 
b8abf64
e91ac58
 
 
b8abf64
 
e91ac58
 
b8abf64
e91ac58
 
 
b8abf64
 
 
 
 
 
 
 
 
 
 
 
e91ac58
b8abf64
567930d
b8abf64
 
e91ac58
 
 
b8abf64
 
 
 
ae215ea
b8abf64
 
 
ae215ea
b8abf64
 
 
 
87c3140
 
ae215ea
 
 
 
 
 
 
e91ac58
b8abf64
e91ac58
 
b8abf64
e91ac58
 
ae215ea
 
 
 
 
 
b8abf64
e91ac58
 
 
b8abf64
 
 
 
 
 
 
ae215ea
 
e91ac58
b8abf64
e91ac58
ae215ea
 
e91ac58
 
ae215ea
b8abf64
87c3140
e729f97
524a99c
904c317
e91ac58
 
 
 
 
b55e03e
e91ac58
 
 
 
 
 
 
6d5de38
 
 
 
 
 
e91ac58
6d5de38
 
 
e91ac58
6d5de38
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
a1e2ec1
e91ac58
 
 
 
 
 
a1e2ec1
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
a1e2ec1
 
 
 
 
 
 
 
e91ac58
 
 
a1e2ec1
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
a1e2ec1
e91ac58
 
 
af032b9
 
 
 
 
e91ac58
6965e7c
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e2ec1
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567930d
e91ac58
 
 
 
 
 
 
 
 
 
 
 
a1e2ec1
 
 
 
524a99c
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
089a1e9
e91ac58
 
 
 
 
 
 
04463cb
567930d
 
 
b8abf64
089a1e9
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
5661288
 
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5661288
e91ac58
5661288
 
e91ac58
 
5661288
 
 
e91ac58
 
5661288
 
e91ac58
5661288
 
aedd7d9
b9673e0
e91ac58
567930d
5661288
 
e91ac58
 
089a1e9
 
aedd7d9
b9673e0
a1e2ec1
e91ac58
 
 
 
 
 
f007322
 
 
 
 
524a99c
b55e03e
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3de0c83
e91ac58
 
 
b8abf64
 
 
 
 
e91ac58
b9673e0
 
 
e91ac58
 
ae215ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55e03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
b55e03e
e91ac58
b55e03e
e91ac58
b55e03e
e91ac58
b55e03e
e91ac58
b55e03e
e91ac58
b55e03e
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f007322
 
 
 
 
 
524a99c
e91ac58
 
 
 
 
 
 
c824976
 
567930d
c824976
 
567930d
c824976
 
 
 
 
567930d
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
a1e2ec1
e91ac58
 
 
 
 
 
a1e2ec1
e91ac58
b8abf64
 
 
 
 
e91ac58
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ac58
 
 
 
 
 
 
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae215ea
 
 
 
 
 
 
 
 
 
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae215ea
567930d
 
ae215ea
 
 
 
 
 
 
 
b55e03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
b55e03e
 
 
524a99c
 
b55e03e
524a99c
 
 
 
7a93196
 
524a99c
e91ac58
b55e03e
ae215ea
 
 
 
 
 
e91ac58
 
 
 
 
 
b55e03e
e91ac58
7a93196
 
e91ac58
b55e03e
e91ac58
7a93196
e91ac58
b55e03e
e91ac58
 
87c3140
dc252b5
e91ac58
 
 
 
 
 
 
 
e729f97
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
 
e91ac58
 
 
 
 
 
 
 
 
524a99c
e91ac58
524a99c
e91ac58
 
524a99c
 
 
 
e91ac58
e729f97
e91ac58
 
524a99c
e91ac58
 
 
eb18fda
e91ac58
 
e729f97
e91ac58
87c3140
524a99c
 
 
b55e03e
 
 
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26c9c07
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
93fd830
e91ac58
 
 
 
 
 
 
 
87c3140
e91ac58
 
 
 
 
 
 
 
 
87c3140
 
446471a
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e729f97
 
87c3140
e91ac58
 
 
b55e03e
e91ac58
 
 
 
0ee709f
524a99c
 
 
e91ac58
 
87c3140
e91ac58
 
 
 
0ee709f
e91ac58
 
 
 
e86548c
87c3140
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e729f97
446471a
6a78dda
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5efd4b8
e91ac58
 
 
 
 
 
 
 
c47fa5d
c3e4ae3
e91ac58
 
 
e729f97
524a99c
e91ac58
 
 
 
 
 
 
87c3140
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3140
 
 
 
 
 
e91ac58
b8abf64
 
 
87c3140
 
e91ac58
 
 
 
 
524a99c
 
 
e91ac58
ae215ea
4d14f52
e91ac58
 
4d14f52
 
 
e91ac58
 
 
 
 
b55e03e
b8abf64
524a99c
 
 
b55e03e
 
 
 
b8abf64
b55e03e
 
 
 
 
524a99c
b8abf64
 
 
524a99c
 
b8abf64
 
 
b55e03e
 
 
 
b8abf64
f56fafe
b55e03e
 
 
 
 
f56fafe
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
import streamlit as st
import yaml, os, json, random, time, re, torch, random, warnings, shutil, sys, glob
import seaborn as sns
import plotly.graph_objs as go
from PIL import Image
import pandas as pd
from io import BytesIO
# from streamlit_extras.let_it_rain import rain
from annotated_text import annotated_text

from vouchervision.LeafMachine2_Config_Builder import write_config_file
from vouchervision.VoucherVision_Config_Builder import build_VV_config, TestOptionsGPT, TestOptionsPalm, check_if_usable
from vouchervision.vouchervision_main import voucher_vision
from vouchervision.general_utils import test_GPU, get_cfg_from_full_path, summarize_expense_report, validate_dir
from vouchervision.model_maps import ModelMaps
from vouchervision.API_validation import APIvalidation
from vouchervision.utils_hf import setup_streamlit_config, save_uploaded_file, save_uploaded_local, save_uploaded_file_local
from vouchervision.data_project import convert_pdf_to_jpg
from vouchervision.utils_LLM import check_system_gpus
from vouchervision.OCR_google_cloud_vision import SafetyCheck

import cProfile
import pstats
#################################################################################################################################################
# Initializations ###############################################################################################################################
#################################################################################################################################################
st.set_page_config(layout="wide", page_icon='img/icon.ico', page_title='VoucherVision',initial_sidebar_state="collapsed")

# Parse the 'is_hf' argument and set it in session state
if 'is_hf' not in st.session_state:
    is_hf_os = os.getenv('IS_HF', '').lower()  # Get the environment variable and convert to lowercase for uniformity
    print(f"=== os.getenv('IS_HF', '').lower() ===> {is_hf_os} ===")
    if is_hf_os in ['1', 'true']:  # Check against string representations of truthy values
        st.session_state['is_hf'] = True
    else:
        st.session_state['is_hf'] = False

print(f"=== is_hf {st.session_state['is_hf']} ===")


# Default YAML file path
if 'config' not in st.session_state:
    st.session_state.config, st.session_state.dir_home = build_VV_config(loaded_cfg=None)
    setup_streamlit_config(st.session_state.dir_home)

# st.session_state['is_hf'] = True

########################################################################################################
###  Global constants                                                                               ####
########################################################################################################
MAX_GALLERY_IMAGES = 20
GALLERY_IMAGE_SIZE = 96


########################################################################################################
###  Init funcs                                                                                     ####
########################################################################################################
def does_private_file_exist():
    dir_home = os.path.dirname(__file__)
    path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
    return os.path.exists(path_cfg_private)


########################################################################################################
###  Streamlit inits                         [FOR SAVE FILE]                                        ####
########################################################################################################




########################################################################################################
###  Streamlit inits                         [routing]                                              ####
########################################################################################################
if st.session_state['is_hf']:
    if 'proceed_to_main' not in st.session_state:
        st.session_state.proceed_to_main = True
    
    if 'proceed_to_private' not in st.session_state:
        st.session_state.proceed_to_private = False 

    if 'private_file' not in st.session_state:
        st.session_state.private_file = True 
else:
    if 'proceed_to_main' not in st.session_state:
        st.session_state.proceed_to_main = False  # New state variable to control the flow

    if 'private_file' not in st.session_state:
        st.session_state.private_file = does_private_file_exist()
        if st.session_state.private_file:
            st.session_state.proceed_to_main = True

    if 'proceed_to_private' not in st.session_state:
        st.session_state.proceed_to_private = False  # New state variable to control the flow


if 'proceed_to_build_llm_prompt' not in st.session_state:
    st.session_state.proceed_to_build_llm_prompt = False  # New state variable to control the flow
if 'proceed_to_build_llm_prompt' not in st.session_state:
    st.session_state.proceed_to_build_llm_prompt = False  
if 'proceed_to_component_detector' not in st.session_state:
    st.session_state.proceed_to_component_detector = False  
if 'proceed_to_parsing_options' not in st.session_state:
    st.session_state.proceed_to_parsing_options = False  
if 'proceed_to_api_keys' not in st.session_state:
    st.session_state.proceed_to_api_keys = False  
if 'proceed_to_space_saver' not in st.session_state:
    st.session_state.proceed_to_space_saver = False  
if 'proceed_to_faqs' not in st.session_state:
    st.session_state.proceed_to_faqs = False 


########################################################################################################
###  Streamlit inits                         [basics]                                               ####
########################################################################################################
if 'processing_add_on' not in st.session_state:
    st.session_state['processing_add_on'] = 0


if 'capability_score' not in st.session_state:
    st.session_state['num_gpus'], st.session_state['gpu_dict'], st.session_state['total_vram_gb'], st.session_state['capability_score'] = check_system_gpus()


if 'formatted_json' not in st.session_state:
    st.session_state['formatted_json'] = None
if 'formatted_json_WFO' not in st.session_state:
    st.session_state['formatted_json_WFO'] = None
if 'formatted_json_GEO' not in st.session_state:
    st.session_state['formatted_json_GEO'] = None


if 'lacks_GPU' not in st.session_state:
    st.session_state['lacks_GPU'] = not torch.cuda.is_available()


if 'API_key_validation' not in st.session_state:
    st.session_state['API_key_validation'] = False
if 'API_checked' not in st.session_state:
    st.session_state['API_checked'] = False
if 'API_rechecked' not in st.session_state:
    st.session_state['API_rechecked'] = False 


if 'present_annotations' not in st.session_state:
    st.session_state['present_annotations'] = None
if 'missing_annotations' not in st.session_state:
    st.session_state['missing_annotations'] = None
if 'date_of_check' not in st.session_state:
    st.session_state['date_of_check'] = None


if 'json_report' not in st.session_state:
    st.session_state['json_report'] = False 
if 'hold_output' not in st.session_state:
    st.session_state['hold_output'] = False


if 'cost_openai' not in st.session_state:
    st.session_state['cost_openai'] = None
if 'cost_azure' not in st.session_state:
    st.session_state['cost_azure'] = None
if 'cost_google' not in st.session_state:
    st.session_state['cost_google'] = None
if 'cost_mistral' not in st.session_state:
    st.session_state['cost_mistral'] = None
if 'cost_local' not in st.session_state:
    st.session_state['cost_local'] = None


if 'settings_filename' not in st.session_state:
    st.session_state['settings_filename'] = None
if 'loaded_settings_filename' not in st.session_state:
    st.session_state['loaded_settings_filename'] = None
if 'zip_filepath' not in st.session_state:
    st.session_state['zip_filepath'] = None


########################################################################################################
###  Streamlit inits                         [prompt builder]                                       ####
########################################################################################################
# These are the fields that are in SLTPvA that are not required by another parsing valication function:
#     "identifiedBy": "M.W. Lyon, Jr.",
#     "recordedBy": "University of Michigan Herbarium",
#     "recordNumber": "",
#     "habitat": "wet subdunal woods",
#     "occurrenceRemarks": "Indiana : Porter Co.",
#     "degreeOfEstablishment": "",
#     "minimumElevationInMeters": "",
#     "maximumElevationInMeters": ""
if 'required_fields' not in st.session_state:
    st.session_state['required_fields'] = ['catalogNumber','order','family','scientificName',
                                           'scientificNameAuthorship','genus','subgenus','specificEpithet','infraspecificEpithet',
                                           'verbatimEventDate','eventDate',
                                           'country','stateProvince','county','municipality','locality','decimalLatitude','decimalLongitude','verbatimCoordinates',]
if 'prompt_info' not in st.session_state:
    st.session_state['prompt_info'] = {}
if 'rules' not in st.session_state:
    st.session_state['rules'] = {}


########################################################################################################
###  Streamlit inits                         [gallery]                                              ####
########################################################################################################
if 'uploader_idk' not in st.session_state:
    st.session_state['uploader_idk'] = 1
if 'input_list_small' not in st.session_state:
    st.session_state['input_list_small'] = []  
if 'input_list' not in st.session_state:
    st.session_state['input_list'] = []
if 'user_clicked_load_prompt_yaml' not in st.session_state:
    st.session_state['user_clicked_load_prompt_yaml'] = None
if 'new_prompt_yaml_filename' not in st.session_state:
    st.session_state['new_prompt_yaml_filename'] = None
if 'view_local_gallery' not in st.session_state:
    st.session_state['view_local_gallery'] = False
if 'dir_images_local_TEMP' not in st.session_state:
    st.session_state['dir_images_local_TEMP'] = False
if 'dir_uploaded_images' not in st.session_state:
    st.session_state['dir_uploaded_images'] = os.path.join(st.session_state.dir_home,'uploads')
    validate_dir(os.path.join(st.session_state.dir_home,'uploads'))
if 'dir_uploaded_images_small' not in st.session_state:
    st.session_state['dir_uploaded_images_small'] = os.path.join(st.session_state.dir_home,'uploads_small')
    validate_dir(os.path.join(st.session_state.dir_home,'uploads_small'))




########################################################################################################
###  CONTENT                                  []                                             ####
########################################################################################################
@st.cache_data
def show_gallery_small():
    st.image(st.session_state['input_list_small'], width=GALLERY_IMAGE_SIZE)  

@st.cache_data
def show_gallery_small_hf(images_to_display):
    print(images_to_display)
    st.image(images_to_display)


@st.cache_data
def load_gallery(converted_files, uploaded_file):
    for file_name in converted_files:   
        if file_name.lower().endswith('.jpg'):
            jpg_file_path = os.path.join(st.session_state['dir_uploaded_images'], file_name)
            st.session_state['input_list'].append(jpg_file_path)

            # Optionally, create a thumbnail for the gallery
            img = Image.open(jpg_file_path)
            img.thumbnail((GALLERY_IMAGE_SIZE, GALLERY_IMAGE_SIZE), Image.Resampling.LANCZOS)
            file_path_small = save_uploaded_file(st.session_state['dir_uploaded_images_small'], uploaded_file, img)
            st.session_state['input_list_small'].append(file_path_small)




@st.cache_data
def handle_image_upload_and_gallery_hf(uploaded_files):
    SAFE = SafetyCheck(st.session_state['is_hf'])
    if uploaded_files:
        
        # Clear input image gallery and input list
        clear_image_uploads()

        ind_small = 0
        for uploaded_file in uploaded_files:

            if SAFE.check_for_inappropriate_content(uploaded_file):
                clear_image_uploads()
                st.error("Warning: You have uploaded an inappropriate image")
                return True

            
            # Determine the file type
            if uploaded_file.name.lower().endswith('.pdf'):
                # Handle PDF files
                file_path = save_uploaded_file(st.session_state['dir_uploaded_images'], uploaded_file)
                # Convert each page of the PDF to an image
                n_pages = convert_pdf_to_jpg(file_path, st.session_state['dir_uploaded_images'], dpi=200)#st.session_state.config['leafmachine']['project']['dir_images_local'])
                # Update the input list for each page image
                converted_files = os.listdir(st.session_state['dir_uploaded_images'])
                for file_name in converted_files:   
                    if file_name.split('.')[1].lower() in ['jpg','jpeg']:
                        ind_small += 1
                        jpg_file_path = os.path.join(st.session_state['dir_uploaded_images'], file_name)
                        st.session_state['input_list'].append(jpg_file_path)

                        if ind_small < MAX_GALLERY_IMAGES +5:
                            # Optionally, create a thumbnail for the gallery
                            img = Image.open(jpg_file_path)
                            img.thumbnail((GALLERY_IMAGE_SIZE, GALLERY_IMAGE_SIZE), Image.Resampling.LANCZOS)
                            try:
                                file_path_small = save_uploaded_file(st.session_state['dir_uploaded_images_small'], file_name, img)
                            except:
                                file_path_small = save_uploaded_file_local(st.session_state['dir_uploaded_images_small'],st.session_state['dir_uploaded_images_small'], file_name, img)
                            st.session_state['input_list_small'].append(file_path_small)
                
            else:
                ind_small += 1
                # Handle JPG/JPEG files (existing process)
                file_path = save_uploaded_file(st.session_state['dir_uploaded_images'], uploaded_file)
                st.session_state['input_list'].append(file_path)
                if ind_small < MAX_GALLERY_IMAGES +5:
                    img = Image.open(file_path)
                    img.thumbnail((GALLERY_IMAGE_SIZE, GALLERY_IMAGE_SIZE), Image.Resampling.LANCZOS)
                    file_path_small = save_uploaded_file(st.session_state['dir_uploaded_images_small'], uploaded_file, img)
                    st.session_state['input_list_small'].append(file_path_small)

        # After processing all files
        st.session_state.config['leafmachine']['project']['dir_images_local'] = st.session_state['dir_uploaded_images']
        st.info(f"Processing images from {st.session_state.config['leafmachine']['project']['dir_images_local']}")
    
    if st.session_state['input_list_small']:
        if len(st.session_state['input_list_small']) > MAX_GALLERY_IMAGES:
            # Only take the first 100 images from the list
            images_to_display = st.session_state['input_list_small'][:MAX_GALLERY_IMAGES]
        else:
            # If there are less than 100 images, take them all
            images_to_display = st.session_state['input_list_small']
        show_gallery_small_hf(images_to_display)
    
    return False


@st.cache_data
def handle_image_upload_and_gallery():
    
    if st.session_state['view_local_gallery'] and st.session_state['input_list_small'] and (st.session_state['dir_images_local_TEMP'] == st.session_state.config['leafmachine']['project']['dir_images_local']):
        if MAX_GALLERY_IMAGES <= st.session_state['processing_add_on']:
            info_txt = f"Showing {MAX_GALLERY_IMAGES} out of {st.session_state['processing_add_on']} images"
        else:
            info_txt = f"Showing {st.session_state['processing_add_on']} out of {st.session_state['processing_add_on']} images"
        st.info(info_txt)
        try:
            show_gallery_small()
        except:
            pass

    elif not st.session_state['view_local_gallery'] and st.session_state['input_list_small'] and (st.session_state['dir_images_local_TEMP'] == st.session_state.config['leafmachine']['project']['dir_images_local']):
        pass
    elif not st.session_state['view_local_gallery'] and not st.session_state['input_list_small'] and (st.session_state['dir_images_local_TEMP'] == st.session_state.config['leafmachine']['project']['dir_images_local']):
        pass
    # elif st.session_state['input_list_small'] and (st.session_state['dir_images_local_TEMP'] != st.session_state.config['leafmachine']['project']['dir_images_local']):
    elif (st.session_state['dir_images_local_TEMP'] != st.session_state.config['leafmachine']['project']['dir_images_local']):
        has_pdf = False
        clear_image_uploads()

        for input_file in os.listdir(st.session_state.config['leafmachine']['project']['dir_images_local']):
            if input_file.split('.')[1].lower() in ['jpg','jpeg']:
                pass
            elif input_file.split('.')[1].lower() in ['pdf',]:
                has_pdf = True
                # Handle PDF files
                file_path = save_uploaded_file_local(st.session_state.config['leafmachine']['project']['dir_images_local'], st.session_state['dir_uploaded_images'], input_file)
                # Convert each page of the PDF to an image
                n_pages = convert_pdf_to_jpg(file_path, st.session_state['dir_uploaded_images'], dpi=200)#st.session_state.config['leafmachine']['project']['dir_images_local'])

            else:
                pass
                # st.warning("Inputs must be '.PDF' or '.jpg' or '.jpeg'")
        if has_pdf:
            st.session_state.config['leafmachine']['project']['dir_images_local'] = st.session_state['dir_uploaded_images']

        dir_images_local = st.session_state.config['leafmachine']['project']['dir_images_local']
        count_n_imgs = list_jpg_files(dir_images_local)
        st.session_state['processing_add_on'] = count_n_imgs
        # print(st.session_state['processing_add_on'])
        st.session_state['dir_images_local_TEMP'] = st.session_state.config['leafmachine']['project']['dir_images_local']
        print("rerun")
        st.rerun()


def content_input_images(col_left, col_right):
    st.write('---')
    # col1, col2 = st.columns([2,8])
    with col_left:
        st.header('Input Images')
        if not st.session_state.is_hf:

            ### Input Images Local
            st.session_state.config['leafmachine']['project']['dir_images_local'] = st.text_input("Input images directory", st.session_state.config['leafmachine']['project'].get('dir_images_local', ''))
        
            st.session_state.config['leafmachine']['project']['continue_run_from_partial_xlsx'] = st.text_input("Continue run from partially completed project XLSX", st.session_state.config['leafmachine']['project'].get('continue_run_from_partial_xlsx', ''), disabled=True)
        else:
            pass
    
    with col_left:
        if st.session_state.is_hf:
            st.session_state['dir_uploaded_images'] = os.path.join(st.session_state.dir_home,'uploads')
            st.session_state['dir_uploaded_images_small'] = os.path.join(st.session_state.dir_home,'uploads_small')
            uploaded_files = st.file_uploader("Upload Images", type=['jpg', 'jpeg','pdf'], accept_multiple_files=True, key=st.session_state['uploader_idk'])
            st.button("Use Test Image",help="This will clear any uploaded images and load the 1 provided test image.",on_click=use_test_image)
    
    with col_right:
        if st.session_state.is_hf:
            result = handle_image_upload_and_gallery_hf(uploaded_files)

        else:
            st.session_state['view_local_gallery'] = st.toggle("View Image Gallery",)
            handle_image_upload_and_gallery()

def list_jpg_files(directory_path):
    jpg_count = 0
    clear_image_gallery()
    st.session_state['input_list_small'] = []

    if not os.path.isdir(directory_path):
        return None
    
    jpg_count = count_jpg_images(directory_path)

    jpg_files = []
    for root, dirs, files in os.walk(directory_path):
        for file in files:
            if file.lower().endswith('.jpg'):
                jpg_files.append(os.path.join(root, file))
                if len(jpg_files) == MAX_GALLERY_IMAGES:
                    break
        if len(jpg_files) == MAX_GALLERY_IMAGES:
            break
            
    for simg in jpg_files:
        simg2 = Image.open(simg)
        simg2.thumbnail((GALLERY_IMAGE_SIZE, GALLERY_IMAGE_SIZE), Image.Resampling.LANCZOS)  
        file_path_small = save_uploaded_local(st.session_state['dir_uploaded_images_small'], simg, simg2)
        st.session_state['input_list_small'].append(file_path_small)
    return jpg_count


def count_jpg_images(directory_path):
    if not os.path.isdir(directory_path):
        return None

    jpg_count = 0
    for root, dirs, files in os.walk(directory_path):
        for file in files:
            if file.lower().endswith('.jpg'):
                jpg_count += 1

    return jpg_count


def create_download_button(zip_filepath, col, key):
    with col:
        # labal_n_images = f"Download Results for {st.session_state['processing_add_on']} Images"
        labal_n_images = f"Download Results"
        with open(zip_filepath, 'rb') as f:
            bytes_io = BytesIO(f.read())
        st.download_button(
            label=labal_n_images,
            type='primary',
            data=bytes_io,
            file_name=os.path.basename(zip_filepath),
            mime='application/zip',
            use_container_width=True,key=key,
        )


def delete_directory(dir_path):
    try:
        shutil.rmtree(dir_path)
        st.session_state['input_list'] = []
        st.session_state['input_list_small'] = []
        # st.success(f"Deleted previously uploaded images, making room for new images: {dir_path}")
    except OSError as e:
        st.error(f"Error: {dir_path} : {e.strerror}")


def clear_image_gallery():
    delete_directory(st.session_state['dir_uploaded_images_small'])
    validate_dir(st.session_state['dir_uploaded_images_small'])

def clear_image_uploads():
    delete_directory(st.session_state['dir_uploaded_images'])
    delete_directory(st.session_state['dir_uploaded_images_small'])
    validate_dir(st.session_state['dir_uploaded_images'])
    validate_dir(st.session_state['dir_uploaded_images_small'])


def use_test_image():
    st.info(f"Processing images from {os.path.join(st.session_state.dir_home,'demo','demo_images')}")
    st.session_state.config['leafmachine']['project']['dir_images_local'] = os.path.join(st.session_state.dir_home,'demo','demo_images')
    n_images = len([f for f in os.listdir(st.session_state.config['leafmachine']['project']['dir_images_local']) if os.path.isfile(os.path.join(st.session_state.config['leafmachine']['project']['dir_images_local'], f))])
    st.session_state['processing_add_on'] = n_images
    clear_image_uploads()
    st.session_state['uploader_idk'] += 1
    for file in os.listdir(st.session_state.config['leafmachine']['project']['dir_images_local']):
        try:
            file_path = save_uploaded_file(os.path.join(st.session_state.dir_home,'demo','demo_images'), file)
        except:
            file_path = save_uploaded_file_local(os.path.join(st.session_state.dir_home,'demo','demo_images'),os.path.join(st.session_state.dir_home,'demo','demo_images'), file)

        st.session_state['input_list'].append(file_path)

        img = Image.open(file_path)
        img.thumbnail((GALLERY_IMAGE_SIZE, GALLERY_IMAGE_SIZE), Image.Resampling.LANCZOS)  
        try:
            file_path_small = save_uploaded_file(st.session_state['dir_uploaded_images_small'], file, img)
        except:
            file_path_small = save_uploaded_file_local(st.session_state['dir_uploaded_images_small'],st.session_state['dir_uploaded_images_small'], file, img)
        st.session_state['input_list_small'].append(file_path_small)


def refresh():
    st.session_state['uploader_idk'] += 1
    st.write('')



    

# def display_image_gallery():
#     # Initialize the container
#     con_image = st.empty()
    
#     # Start the div for the image grid
#     img_grid_html = """
#     <div style='display: flex; flex-wrap: wrap; align-items: flex-start; overflow-y: auto; max-height: 400px; gap: 10px;'>
#     """
    
#     # Loop through each image in the input list
#     # with con_image.container():
#     for image_path in st.session_state['input_list']:
#         # Open the image and create a thumbnail
#         img = Image.open(image_path)
#         img.thumbnail((120, 120), Image.Resampling.LANCZOS)  

#         # Convert the image to base64
#         base64_image = image_to_base64(img)

#         # Append the image to the grid HTML
#         # img_html = f"""
#         #     <div style='display: flex; flex-wrap: wrap; overflow-y: auto; max-height: 400px;'>
#         #         <img src='data:image/jpeg;base64,{base64_image}' alt='Image' style='max-width: 100%; height: auto;'>
#         #     </div>
#         #     """
#         img_html = f"""
#                 <img src='data:image/jpeg;base64,{base64_image}' alt='Image' style='max-width: 100%; height: auto;'>
#             """
#         img_grid_html += img_html
#         # st.markdown(img_html, unsafe_allow_html=True)

    
#     # Close the div for the image grid
#     img_grid_html += "</div>"
    
#     # Display the image grid in the container
#     with con_image.container():
#         st.markdown(img_grid_html, unsafe_allow_html=True)

#     # The CSS to make the images display inline and be responsive
#     css = """
#     <style>
#         .scrollable-image-container img {
#             max-width: 100%;
#             height: auto;
#         }
#     </style>
#     """
#     # Apply the CSS
#     st.markdown(css, unsafe_allow_html=True)
########################################################################################################
########################################################################################################
########################################################################################################
class ProgressReport:
    def __init__(self, overall_bar, batch_bar, text_overall, text_batch):
        self.overall_bar = overall_bar
        self.batch_bar = batch_bar
        self.text_overall = text_overall
        self.text_batch = text_batch
        self.current_overall_step = 0
        self.total_overall_steps = 20  # number of major steps in machine function
        self.current_batch = 0
        self.total_batches = 20

    def update_overall(self, step_name=""):
        self.current_overall_step += 1
        self.overall_bar.progress(self.current_overall_step / self.total_overall_steps)
        self.text_overall.text(step_name)

    def update_batch(self, step_name=""):
        self.current_batch += 1
        self.batch_bar.progress(self.current_batch / self.total_batches)
        self.text_batch.text(step_name)

    def set_n_batches(self, n_batches):
        self.total_batches = n_batches

    def set_n_overall(self, total_overall_steps):
        self.current_overall_step = 0
        self.overall_bar.progress(0)
        self.total_overall_steps = total_overall_steps

    def reset_batch(self, step_name):
        self.current_batch = 0
        self.batch_bar.progress(0)
        self.text_batch.text(step_name)
    def reset_overall(self, step_name):
        self.current_overall_step = 0
        self.overall_bar.progress(0)
        self.text_overall.text(step_name)
    
    def get_n_images(self):
        return self.n_images
    def get_n_overall(self):
        return self.total_overall_steps

class JSONReport:
    def __init__(self, col_updates, col_json, col_json_WFO, col_json_GEO, col_json_map):
        self.plant_list = [':evergreen_tree:', ':deciduous_tree:',':palm_tree:',
                      ':maple_leaf:',':fallen_leaf:',':mushroom:',':leaves:',
                      ':cactus:',':seedling:',':tulip:',':sunflower:',':hibiscus:',
                      ':cherry_blossom:',':rose:',]
        self.location_list = [':earth_africa:',':earth_americas:',':earth_asia:',]
        self.book_list = [':bookmark_tabs:',':ledger:',':notebook:',':clipboard:',':scroll:',
                          ':notebook_with_decorative_cover:',':green_book:',':blue_book:',
                          ':open_book:',':closed_book:',':book:',
                          ':orange_book:',':books:',':memo:',':pencil:',
                          ]

        # Create placeholders for each JSON component
        self.col_updates = col_updates
        self.col_json = col_json
        self.col_json_WFO = col_json_WFO
        self.col_json_GEO = col_json_GEO
        self.col_json_map = col_json_map

        self.update_main = col_updates.empty()

        self.update_left = col_json.empty()
        self.header_json = col_json.empty()
        self.json_placeholder = col_json.empty()

        self.update_middle = col_json_WFO.empty()
        self.header_json_WFO = col_json_WFO.empty()
        self.json_WFO_placeholder = col_json_WFO.empty()

        self.update_right = col_json_GEO.empty()
        self.header_json_GEO = col_json_GEO.empty()
        self.json_GEO_placeholder = col_json_GEO.empty()

        self.update_map = col_json_map.empty()
        self.header_json_map = col_json_map.empty()
        self.json_map = col_json_map.empty()


        self.json = None
        self.json_WFO = None
        self.json_GEO = None

        self.text_main = ''
        self.text_middle = ''
        self.text_right = ''

        self.header_text_main = None
        self.header_text_middle = None
        self.header_text_right = None

    
    def set_JSON(self, json_main, json_WFO, json_GEO):
        i_plant = random.randint(0,len(self.plant_list)-1)
        i_location = random.randint(0,len(self.location_list)-1)
        i_book = random.randint(0,len(self.book_list)-1)
        self.json = json_main
        self.json_WFO = json_WFO
        self.json_GEO = json_GEO

        # Update placeholders with new JSON data
        self.header_text_main = None
        self.header_text_middle = None
        self.header_text_right = None

        self.update_main.subheader(f':loudspeaker: {self.text_main}')
        self.update_left.subheader(f'{self.book_list[i_book]}', divider='rainbow')
        self.update_middle.subheader(f'{self.plant_list[i_plant]}', divider='rainbow')
        self.update_right.subheader(f'{self.location_list[i_location]}', divider='rainbow')
        self.update_map.subheader(f':world_map:', divider='rainbow')

        self.header_json.markdown('**LLM-derived information from the OCR text**')
        self.header_json_WFO.markdown('World Flora Online')
        self.header_json_GEO.markdown('Geolocate')
        self.header_json_map.markdown(f':large_purple_circle: :violet[Geolocated]  :large_green_circle: :green[From OCR Text]')

        self.json_placeholder.json(self.json)
        self.json_WFO_placeholder.json(self.json_WFO)
        self.json_GEO_placeholder.json(self.json_GEO)

        # If GEO data is available, plot on the map
        # Clear the existing content in the map placeholder
        # Clear the existing content in the map placeholder
        self.json_map.empty()
        map_points = []
        map_data = []
        # Function to safely convert to float
        def safe_float_convert(value):
            try:
                return float(value)
            except (ValueError, TypeError):
                return None

        # Check and process first point's data
        lat = safe_float_convert(self.json_GEO.get("GEO_decimal_lat")) if self.json_GEO else None
        lon = safe_float_convert(self.json_GEO.get("GEO_decimal_long")) if self.json_GEO else None

        if lat is not None and lon is not None:
            map_points.append({'lat': lat, 'lon': lon, 'color': '#8800ff' , 'size': [50000]})

        # Check and process second point's data
        lat_verbatim = safe_float_convert(self.json.get("decimalLatitude")) if self.json else None
        lon_verbatim = safe_float_convert(self.json.get("decimalLongitude")) if self.json else None

        if lat_verbatim is not None and lon_verbatim is not None:
            map_points.append({'lat': lat_verbatim, 'lon': lon_verbatim, 'color': '#00c227' , 'size': [25000]})

        # Convert the list of points to a DataFrame
        map_data = pd.DataFrame(map_points)

        # Display the map if map_data is not empty
        if not map_data.empty:
            with self.json_map:
                st.map(map_data, zoom=4, size='size', color='color', use_container_width=True)

    def set_text(self, text_main=None, text_middle=None, text_right=None):
        if text_main:
            self.text_main = text_main
            self.update_main.subheader(f':loudspeaker: {self.text_main}')
        if text_middle:
            self.text_middle = text_middle
            self.update_middle.subheader('', divider='rainbow')
        if text_right:
            self.text_right = text_right
            self.update_right.subheader(self.text_right, divider='rainbow')

    def clear_JSON(self):
        self.json = None
        self.json_WFO = None
        self.json_GEO = None

        # Clear the content in the placeholders
        self.json_placeholder.empty()
        self.json_WFO_placeholder.empty()
        self.json_GEO_placeholder.empty()

    def format_json(self, json_obj):
        try:
            return json.dumps(json.loads(json_obj), indent=4, sort_keys=False)
        except:
            return json.dumps(json_obj, indent=4, sort_keys=False)

    





def setup_streamlit_config(dir_home):
    # Define the directory path and filename
    dir_path = os.path.join(dir_home, ".streamlit")
    file_path = os.path.join(dir_path, "config.toml")

    # Check if directory exists, if not create it
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)
    
    # Create or modify the file with the provided content
    config_content = f"""
    [theme]
    base = "dark"
    primaryColor = "#00ff00"

    [server]
    enableStaticServing = false
    runOnSave = true
    port = 8524
    """

    with open(file_path, "w") as f:
        f.write(config_content.strip())



def display_scrollable_results(JSON_results, test_results, OPT2, OPT3):
    """
    Display the results from JSON_results in a scrollable container.
    """
    # Initialize the container
    con_results = st.empty()
    with con_results.container():
        
        # Start the custom container for all the results
        results_html = """<div class='scrollable-results-container'>"""
        
        for idx, (test_name, _) in enumerate(sorted(test_results.items())):
            _, ind_opt1, ind_opt2, ind_opt3 = test_name.split('__')
            opt2_readable = "Use LeafMachine2" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2"
            opt3_readable = f"{OPT3[int(ind_opt3.split('-')[1])]}"

            if JSON_results[idx] is None:
                results_html += f"<p>None</p>"
            else:
                formatted_json = json.dumps(JSON_results[idx], indent=4, sort_keys=False)
                results_html += f"<pre>[{opt2_readable}] + [{opt3_readable}]<br/>{formatted_json}</pre>"
        
        # End the custom container
        results_html += """</div>"""

        # The CSS to make this container scrollable
        css = """
        <style>
            .scrollable-results-container {
                overflow-y: auto;
                height: 600px;
                width: 100%;
                white-space: pre-wrap;  # To wrap the content
                font-family: monospace;  # To give the JSON a code-like appearance
            }
        </style>
        """

        # Apply the CSS and then the results
        st.markdown(css, unsafe_allow_html=True)
        st.markdown(results_html, unsafe_allow_html=True)



def display_test_results(test_results, JSON_results, llm_version):
    if llm_version == 'gpt':
        OPT1, OPT2, OPT3 = TestOptionsGPT.get_options()
    elif llm_version == 'palm':
        OPT1, OPT2, OPT3 = TestOptionsPalm.get_options()
    else:
        raise

    widths = [1] * (len(OPT1) + 2) + [2]
    columns = st.columns(widths)

    with columns[0]:
        st.write("LeafMachine2")
    with columns[1]:
        st.write("Prompt")
    with columns[len(OPT1) + 2]:
        st.write("Scroll to See Last Transcription in Each Test")

    already_written = set()

    for test_name, result in sorted(test_results.items()):
        _, ind_opt1, _, _ = test_name.split('__')
        option_value = OPT1[int(ind_opt1.split('-')[1])]

        if option_value not in already_written:
            with columns[int(ind_opt1.split('-')[1]) + 2]:
                st.write(option_value)
            already_written.add(option_value)

    printed_options = set()

    with columns[-1]:
        display_scrollable_results(JSON_results, test_results, OPT2, OPT3)

    # Close the custom container
    st.write('</div>', unsafe_allow_html=True)


    for idx, (test_name, result) in enumerate(sorted(test_results.items())):
        _, ind_opt1, ind_opt2, ind_opt3 = test_name.split('__')
        opt2_readable = "Use LeafMachine2" if OPT2[int(ind_opt2.split('-')[1])] else "Don't use LeafMachine2"
        opt3_readable = f"{OPT3[int(ind_opt3.split('-')[1])]}"

        if (opt2_readable, opt3_readable) not in printed_options:
            with columns[0]:
                st.info(f"{opt2_readable}")
                st.write('---')
            with columns[1]:
                st.info(f"{opt3_readable}")
                st.write('---')
            printed_options.add((opt2_readable, opt3_readable))

        with columns[int(ind_opt1.split('-')[1]) + 2]:
            if result:
                st.success(f"Test Passed")
            else:
                st.error(f"Test Failed")
            st.write('---')
    
    # success_count = sum(1 for result in test_results.values() if result)
    # failure_count = len(test_results) - success_count
    # proportional_rain("🥇", success_count, "💔", failure_count, font_size=72, falling_speed=5, animation_length="infinite")
    # rain_emojis(test_results)



def add_emoji_delay():
    time.sleep(0.3)



# def rain_emojis(test_results):
#     # test_results = {
#     #     'test1': True,   # Test passed
#     #     'test2': True,   # Test passed
#     #     'test3': True,   # Test passed
#     #     'test4': False,  # Test failed
#     #     'test5': False,  # Test failed
#     #     'test6': False,  # Test failed
#     #     'test7': False,  # Test failed
#     #     'test8': False,  # Test failed
#     #     'test9': False,  # Test failed
#     #     'test10': False,  # Test failed
#     # }
#     success_emojis = ["🥇", "🏆", "🍾", "🙌"]
#     failure_emojis = ["💔", "😭"]

#     success_count = sum(1 for result in test_results.values() if result)
#     failure_count = len(test_results) - success_count

#     chosen_emoji = random.choice(success_emojis)
#     for _ in range(success_count):
#         rain(
#             emoji=chosen_emoji,
#             font_size=72,
#             falling_speed=4,
#             animation_length=2,
#         )
#         add_emoji_delay()

#     chosen_emoji = random.choice(failure_emojis)
#     for _ in range(failure_count):
#         rain(
#             emoji=chosen_emoji,
#             font_size=72,
#             falling_speed=5,
#             animation_length=1,
#         )
#         add_emoji_delay()



def format_json(json_obj):
    try:
        return json.dumps(json.loads(json_obj), indent=4, sort_keys=False)
    except:
        return json.dumps(json_obj, indent=4, sort_keys=False)
    


def get_prompt_versions(LLM_version):
    yaml_files = [f for f in os.listdir(os.path.join(st.session_state.dir_home, 'custom_prompts')) if f.endswith('.yaml')]

    return yaml_files



def get_private_file():
    dir_home = os.path.dirname(__file__)
    path_cfg_private = os.path.join(dir_home, 'PRIVATE_DATA.yaml')
    return get_cfg_from_full_path(path_cfg_private)

def blog_text_and_image(text=None, fullpath=None, width=700):
    if text:
        st.markdown(f"{text}")
    if fullpath:
        st.session_state.logo = Image.open(fullpath)
        st.image(st.session_state.logo, width=width)

def blog_text(text_bold, text):
    st.markdown(f"- **{text_bold}**{text}")
def blog_text_plain(text_bold, text):
    st.markdown(f"**{text_bold}** {text}")

def create_private_file(): 
    section_left = 2
    section_mid = 6
    section_right = 2
    
    st.session_state.proceed_to_main = False
    st.title("VoucherVision")
    _, col_private,__= st.columns([section_left,section_mid, section_right])

    

    if st.session_state.private_file:
        cfg_private = get_private_file()
    else:
        cfg_private = {}
        cfg_private['openai'] = {}
        cfg_private['openai']['OPENAI_API_KEY'] =''
        
        cfg_private['openai_azure'] = {}
        cfg_private['openai_azure']['OPENAI_API_KEY_AZURE'] = ''
        cfg_private['openai_azure']['OPENAI_API_VERSION'] = ''
        cfg_private['openai_azure']['OPENAI_API_BASE'] =''
        cfg_private['openai_azure']['OPENAI_ORGANIZATION'] =''
        cfg_private['openai_azure']['OPENAI_API_TYPE'] =''

        cfg_private['google'] = {}
        cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS'] =''
        cfg_private['google']['GOOGLE_PALM_API'] =''
        cfg_private['google']['GOOGLE_PROJECT_ID'] =''
        cfg_private['google']['GOOGLE_LOCATION'] =''

        cfg_private['mistral'] = {}
        cfg_private['mistral']['MISTRAL_API_KEY'] =''

        cfg_private['here'] = {}
        cfg_private['here']['APP_ID'] =''
        cfg_private['here']['API_KEY'] =''

        cfg_private['open_cage_geocode'] = {}
        cfg_private['open_cage_geocode']['API_KEY'] =''
    

    with col_private:
        st.header("Set API keys")
        st.warning("To commit changes to API keys you must press the 'Set API Keys' button at the bottom of the page.")
        st.write("Before using VoucherVision you must set your API keys. All keys are stored locally on your computer and are never made public.")
        st.write("API keys are stored in `../VoucherVision/PRIVATE_DATA.yaml`.")
        st.write("Deleting this file will allow you to reset API keys. Alternatively, you can edit the keys in the user interface or by manually editing the `.yaml` file in a text editor.")
        st.write("Leave keys blank if you do not intend to use that service.")
        st.info("Note: You can manually edit these API keys later by opening the /PRIVATE_DATA.yaml file in a plain text editor.")

        st.write("---")
        st.subheader("Google Vision  (*Required*) / Google PaLM 2 / Google Gemini")
        st.markdown("VoucherVision currently uses [Google Vision API](https://cloud.google.com/vision/docs/ocr) for OCR. Generating an API key for this is more involved than the others. [Please carefully follow the instructions outlined here to create and setup your account.](https://cloud.google.com/vision/docs/setup) ")
        st.markdown("""Once your account is created, [visit this page](https://console.cloud.google.com) and create a project. Then follow these instructions:""")

        with st.expander("**View Google API Instructions**"):
        
            blog_text_and_image(text="Select your project, then in the search bar, search for `vertex ai` and select the option in the photo below.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_00.PNG'))
            
            blog_text_and_image(text="On the main overview page, click `Enable All Recommended APIs`. Sometimes this button may be hidden. In that case, enable all of the suggested APIs listed on this page.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_0.PNG'))
            
            blog_text_and_image(text="Sometimes this button may be hidden. In that case, enable all of the suggested APIs listed on this page.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_2.PNG'))
            
            blog_text_and_image(text="Make sure that all APIs are enabled.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_1.PNG'))
            
            blog_text_and_image(text="Find the `Vision AI API` service and go to its page.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_3.PNG'))
            
            blog_text_and_image(text="Find the `Vision AI API` service and go to its page. This is the API service required to use OCR in VoucherVision and must be enabled.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_6.PNG'))
            
            blog_text_and_image(text="You can also search for the Vertex AI Vision service.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_4.PNG'))
            
            blog_text_and_image(text=None, 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_5.PNG'))
            
            st.subheader("Getting a Google JSON authentication key")
            st.write("Google uses a JSON file to store additional authentication information. Save this file in a safe, private location and assign the `GOOGLE_APPLICATION_CREDENTIALS` value to the file path. For Hugging Face, copy the contents of the JSON file including the `\{\}` and paste it as the secret value.")
            st.write("To download your JSON key...")
            blog_text_and_image(text="Open the navigation menu. Click on the hamburger menu (three horizontal lines) in the top left corner. Go to IAM & Admin. ", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_7.PNG'),width=300)
            
            blog_text_and_image(text="In the navigation pane, hover over `IAM & Admin` and then click on `Service accounts`.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_8.PNG'))
            
            blog_text_and_image(text="Find the default Compute Engine service account, select it.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_9.PNG'))
            
            blog_text_and_image(text="Click `Add Key`.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_10.PNG'))
            
            blog_text_and_image(text="Select `JSON` and click create. This will download your key. Store this in a safe location. The file path to this safe location is the value that you enter into the `GOOGLE_APPLICATION_CREDENTIALS` value.", 
                                fullpath=os.path.join(st.session_state.dir_home, 'demo','google','google_api_11.PNG'))
            
            blog_text(text_bold="Store Safely", text=": This file contains sensitive data that can be used to authenticate and bill your Google Cloud account. Never commit it to public repositories or expose it in any way. Always keep it safe and secure.")

            st.write("Below is an example of the JSON key.")
            st.json({
                "type": "service_account",
                "project_id": "NAME OF YOUR PROJECT",
                "private_key_id": "XXXXXXXXXXXXXXXXXXXXXXXX",
                "private_key": "-----BEGIN PRIVATE KEY-----\naaaaaaaaaaa\n-----END PRIVATE KEY-----\n",
                "client_email": "EMAIL-ADDRESS@developer.gserviceaccount.com",
                "client_id": "ID NUMBER",
                "auth_uri": "https://accounts.google.com/o/oauth2/auth",
                "token_uri": "https://oauth2.googleapis.com/token",
                "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
                "client_x509_cert_url": "A LONG URL",
                "universe_domain": "googleapis.com"
                })
            
            blog_text('Google project ID', ': The project ID is the "project_id"  value from the JSON file.')
            blog_text('Google project location', ': The project location specifies the location of the Google server that your project resources will utilize. It should not really make a difference which location you choose. We use `us-central1`, but you might want to choose a location closer to where you live. [please see this page for a list of available regions](https://cloud.google.com/vertex-ai/docs/general/locations)')

            
        google_application_credentials = st.text_input(label = 'Full path to Google Cloud JSON API key file', value = cfg_private['google'].get('GOOGLE_APPLICATION_CREDENTIALS', ''),
                                                placeholder = 'e.g. C:/Documents/Secret_Files/google_API/application_default_credentials.json',
                                                help ="This API Key is in the form of a JSON file. Please save the JSON file in a safe directory. DO NOT store the JSON key inside of the VoucherVision directory.",
                                                type='password')
        google_project_location = st.text_input(label = 'Google project location', value = cfg_private['google'].get('GOOGLE_LOCATION', ''),
                                                placeholder = 'e.g. us-central1',
                                                help ="This is the location of where your Google services are operating.",
                                                type='password')
        google_project_id = st.text_input(label = 'Google project ID', value = cfg_private['google'].get('GOOGLE_PROJECT_ID', ''),
                                                placeholder = 'e.g. my-project-name',
                                                help ="This is the value in the `project_id` field in your JSON key.",
                                                type='password')

        
        st.write("---")
        st.subheader("OpenAI")
        st.markdown("API key for first-party OpenAI API. Create an account with OpenAI [here](https://platform.openai.com/signup), then create an API key [here](https://platform.openai.com/account/api-keys).")
        openai_api_key = st.text_input("openai_api_key", cfg_private['openai'].get('OPENAI_API_KEY', ''),
                                                 help='The actual API key. Likely to be a string of 2 character, a dash, and then a 48-character string: sk-XXXXXXXX...',
                                                 placeholder = 'e.g. sk-XXXXXXXX...',
                                                 type='password')


        st.write("---")
        st.subheader("OpenAI - Azure")
        st.markdown("This version OpenAI relies on Azure servers directly as is intended for private enterprise instances of OpenAI's services, such as [UM-GPT](https://its.umich.edu/computing/ai). Administrators will provide you with the following information.")
        azure_openai_api_version = st.text_input("OPENAI_API_VERSION", cfg_private['openai_azure'].get('OPENAI_API_VERSION', ''),
                                                 help='API Version e.g. "2023-05-15"',
                                                 placeholder = 'e.g. 2023-05-15',
                                                 type='password')
        azure_openai_api_key = st.text_input("OPENAI_API_KEY_AZURE", cfg_private['openai_azure'].get('OPENAI_API_KEY_AZURE', ''),
                                                 help='The actual API key. Likely to be a 32-character string. This might also be called "endpoint."',
                                                 placeholder = 'e.g. 12333333333333333333333333333332',
                                                 type='password')
        azure_openai_api_base = st.text_input("OPENAI_API_BASE", cfg_private['openai_azure'].get('OPENAI_API_BASE', ''),
                                                 help='The base url for the API e.g. "https://api.umgpt.umich.edu/azure-openai-api"',
                                                 placeholder = 'e.g. https://api.umgpt.umich.edu/azure-openai-api',
                                                 type='password')
        azure_openai_organization = st.text_input("OPENAI_ORGANIZATION", cfg_private['openai_azure'].get('OPENAI_ORGANIZATION', ''),
                                                 help='Your organization code. Likely a short string.',
                                                 placeholder = 'e.g. 123456',
                                                 type='password')
        azure_openai_api_type = st.text_input("OPENAI_API_TYPE", cfg_private['openai_azure'].get('OPENAI_API_TYPE', ''),
                                                 help='The API type. Typically "azure"',
                                                 placeholder = 'e.g. azure',
                                                 type='password')

        # st.write("---")
        # st.subheader("Google PaLM 2 (Deprecated)")
        # st.write("Plea")
        # st.markdown('Follow these [instructions](https://developers.generativeai.google/tutorials/setup) to generate an API key for PaLM 2. You may need to also activate an account with [MakerSuite](https://makersuite.google.com/app/apikey) and enable "early access." If this is deprecated, then use the full Google API instructions above.')

        # google_palm = st.text_input("Google PaLM 2 API Key", cfg_private['google'].get('GOOGLE_PALM_API', ''),
        #                                          help='The MakerSuite API key e.g. a 32-character string',
        #                                          placeholder='e.g. SATgthsykuE64FgrrrrEervr3S4455t_geyDeGq',
        #                                          type='password')


        st.write("---")
        st.subheader("MistralAI")
        st.markdown('Follow these [instructions](https://console.mistral.ai/) to generate an API key for MistralAI.')
        mistral_API_KEY = st.text_input("MistralAI API Key", cfg_private['mistral'].get('MISTRAL_API_KEY', ''),
                                                 help='e.g. a 32-character string',
                                                 placeholder='e.g. SATgthsykuE64FgrrrrEervr3S4455t_geyDeGq',
                                                 type='password')
                

        st.write("---")
        st.subheader("HERE Geocoding")
        st.markdown('Follow these [instructions](https://platform.here.com/sign-up?step=verify-identity) to generate an API key for HERE.')
        here_APP_ID = st.text_input("HERE Geocoding App ID", cfg_private['here'].get('APP_ID', ''),
                                                 help='e.g. a 32-character string',
                                                 placeholder='e.g. SATgthsykuE64FgrrrrEervr3S4455t_geyDeGq',
                                                 type='password')
        here_API_KEY = st.text_input("HERE Geocoding API Key", cfg_private['here'].get('API_KEY', ''),
                                                 help='e.g. a 32-character string',
                                                 placeholder='e.g. SATgthsykuE64FgrrrrEervr3S4455t_geyDeGq',
                                                 type='password')



        st.button("Set API Keys",type='primary', on_click=save_changes_to_API_keys, 
                    args=[cfg_private,
                        openai_api_key,
                        azure_openai_api_version, azure_openai_api_key, azure_openai_api_base, azure_openai_organization, azure_openai_api_type,
                        google_application_credentials, google_project_location, google_project_id,
                        mistral_API_KEY, 
                        here_APP_ID, here_API_KEY])
        if st.button('Proceed to VoucherVision'):
            st.session_state.private_file = does_private_file_exist()
            st.session_state.proceed_to_private = False
            st.session_state.proceed_to_main = True
            st.rerun()
       

def save_changes_to_API_keys(cfg_private,
                        openai_api_key,
                        azure_openai_api_version, azure_openai_api_key, azure_openai_api_base, azure_openai_organization, azure_openai_api_type,
                        google_application_credentials, google_project_location, google_project_id,
                        mistral_API_KEY, 
                        here_APP_ID, here_API_KEY): 
    
    # Update the configuration dictionary with the new values
    cfg_private['openai']['OPENAI_API_KEY'] = openai_api_key 

    cfg_private['openai_azure']['OPENAI_API_VERSION'] = azure_openai_api_version
    cfg_private['openai_azure']['OPENAI_API_KEY_AZURE'] = azure_openai_api_key
    cfg_private['openai_azure']['OPENAI_API_BASE'] = azure_openai_api_base
    cfg_private['openai_azure']['OPENAI_ORGANIZATION'] = azure_openai_organization
    cfg_private['openai_azure']['OPENAI_API_TYPE'] = azure_openai_api_type

    cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS'] = google_application_credentials
    cfg_private['google']['GOOGLE_PROJECT_ID'] = google_project_id
    cfg_private['google']['GOOGLE_LOCATION'] = google_project_location 

    cfg_private['mistral']['MISTRAL_API_KEY'] = mistral_API_KEY

    cfg_private['here']['APP_ID'] = here_APP_ID
    cfg_private['here']['API_KEY'] = here_API_KEY
    # Call the function to write the updated configuration to the YAML file
    write_config_file(cfg_private, st.session_state.dir_home, filename="PRIVATE_DATA.yaml")
    st.success(f"API Keys saved to {os.path.join(st.session_state.dir_home, 'PRIVATE_DATA.yaml')}")
    # st.session_state.private_file = does_private_file_exist()

# Function to load a YAML file and update session_state


### Updated to match HF version
# def save_prompt_yaml(filename):



@st.cache_data
def show_header_welcome():
    st.session_state.logo_path = os.path.join(st.session_state.dir_home, 'img','logo.png')
    st.session_state.logo = Image.open(st.session_state.logo_path)
    st.image(st.session_state.logo, width=250)

def determine_n_images():
    try:
        # Check if 'dir_uploaded_images' key exists in session state and it is not empty
        if 'dir_uploaded_images' in st.session_state and st.session_state['dir_uploaded_images']:
            dir_path = st.session_state['dir_uploaded_images']  # This would be the path to the directory
            # Count only files (not directories) in the specified directory
            count = len([f for f in os.listdir(dir_path) if os.path.isfile(os.path.join(dir_path, f))])
            return count
        else:
            return None  # Return 0 if the directory path doesn't exist or is empty
    except Exception as e:
        print(e)
        return None
# def determine_n_images():
#     try:
#         # Check if 'dir_uploaded_images' key exists and it is not empty
#         if 'dir_uploaded_images' in st and st['dir_uploaded_images']:
#             dir_path = st['dir_uploaded_images']  # This would be the path to the directory
#             return len([f for f in os.listdir(dir_path) if os.path.isfile(os.path.join(dir_path, f))])
#         else:
#             return None
#     except:
#         return None

def save_api_status(present_keys, missing_keys, date_of_check):
    with open(os.path.join(st.session_state.dir_home,'api_status.yaml'), 'w') as file:
        yaml.dump({'present_keys': present_keys, 'missing_keys': missing_keys, "date": date_of_check}, file)

def load_api_status():
    try:
        with open(os.path.join(st.session_state.dir_home,'api_status.yaml'), 'r') as file:
            status = yaml.safe_load(file)
            return status.get('present_keys', []), status.get('missing_keys', []), status.get('date', [])
    except FileNotFoundError:
        return None, None, None
    
def display_api_key_status(ccol):
    if not st.session_state['API_checked']:
        present_keys, missing_keys, date_of_check = load_api_status()
        if present_keys is None and missing_keys is None:
            st.session_state['API_checked'] = False
        else:
            # Convert keys to annotations (similar to what you do in check_api_key_status)
            present_annotations = []
            missing_annotations = []
            for key in present_keys:
                if "Valid" in key:
                    show_text = key.split('(')[0]
                    present_annotations.append((show_text, "ready!", "#059c1b"))  # Green for valid
                elif "Invalid" in key:
                    show_text = key.split('(')[0]
                    present_annotations.append((show_text, "error", "#870307"))  # Red for invalid

            st.session_state['present_annotations'] = present_annotations
            st.session_state['missing_annotations'] = missing_annotations
            st.session_state['date_of_check'] = date_of_check
            st.session_state['API_checked'] = True
            # print('for')
            # print(st.session_state['present_annotations'])
            # print(st.session_state['missing_annotations'])
    else:
        # print('else')
        # print(st.session_state['present_annotations'])
        # print(st.session_state['missing_annotations'])
        pass

    # Check if the API status has already been retrieved
    if 'API_checked' not in st.session_state or not st.session_state['API_checked'] or st.session_state['API_rechecked']:
        with ccol:
            with st.spinner('Verifying APIs by sending short requests...'):
                check_api_key_status()
        st.session_state['API_checked'] = True
        st.session_state['API_rechecked'] = False

    st.markdown(f"Last checked on {st.session_state['date_of_check']}")
    # Display present keys horizontally
    if 'present_annotations' in st.session_state and st.session_state['present_annotations']:
        annotated_text(*st.session_state['present_annotations'])

    # Display missing keys horizontally
    if 'missing_annotations' in st.session_state and st.session_state['missing_annotations']:
        annotated_text(*st.session_state['missing_annotations'])
    


def check_api_key_status():
    try:
        path_cfg_private = os.path.join(st.session_state.dir_home, 'PRIVATE_DATA.yaml')
        cfg_private = get_cfg_from_full_path(path_cfg_private)
    except:
        cfg_private = None

    API_Validator = APIvalidation(cfg_private, st.session_state.dir_home, st.session_state['is_hf'])
    present_keys, missing_keys, date_of_check = API_Validator.report_api_key_status()  # Assuming this function returns two lists

    # Prepare annotations for present keys
    present_annotations = []
    missing_annotations = []
    for key in present_keys:
        if "Valid" in key:
            show_text = key.split('(')[0]
            present_annotations.append((show_text, "ready!", "#059c1b"))  # Green for valid
        elif "Invalid" in key:
            show_text = key.split('(')[0]
            present_annotations.append((show_text, "error", "#870307"))  # Red for invalid

    # Prepare annotations for missing keys
    for key in missing_keys:
        show_text = key.split('(')[0]
        missing_annotations.append((show_text, "n/a", " ", "#c4c4c4"))  # Red for invalid

    # Save API key status
    save_api_status(present_keys, missing_keys, date_of_check) 

    st.session_state['present_annotations'] = present_annotations
    st.session_state['missing_annotations'] = missing_annotations
    st.session_state['date_of_check'] = date_of_check
    

def convert_cost_dict_to_table(cost, name):
    # Convert the dictionary to a pandas DataFrame for nicer display
    df = pd.DataFrame.from_dict(cost, orient='index')
    df.reset_index(inplace=True)
    df.columns = [str(name), 'Input', 'Output'] 


    # Apply color gradient
    cm = sns.light_palette("green", as_cmap=True)
    styled_df = df.style.background_gradient(cmap=cm, subset=['Input', 'Output'])
    return styled_df

def get_all_cost_tables():
    warnings.filterwarnings('ignore', message=".*is_sparse is deprecated.*")
    CostMap = ModelMaps
    cost_names = CostMap.get_all_mapping_cost()

    path_api_cost = os.path.join(st.session_state.dir_home,'api_cost','api_cost.yaml')
    with open(path_api_cost, 'r') as file:
        cost_data = yaml.safe_load(file)

    cost_openai = {}
    cost_azure = {}
    cost_google = {}
    cost_mistral = {}
    cost_local = {}
    for key, value in cost_names.items():
        parts = value.split("_")
        if 'LOCAL' in parts:
            cost_local[key] = cost_data.get(value,'')
        elif 'AZURE' in parts:
            cost_azure[key] = cost_data.get(value,'')
        elif 'GPT' in parts:
            cost_openai[key] = cost_data.get(value,'')
        elif 'PALM2' in parts or 'GEMINI' in parts:
            cost_google[key] = cost_data.get(value,'')
        elif ('MISTRAL' in parts) or ('MIXTRAL' in parts):
            cost_mistral[key] = cost_data.get(value,'')

    styled_cost_openai = convert_cost_dict_to_table(cost_openai, "OpenAI")
    styled_cost_azure = convert_cost_dict_to_table(cost_azure, "OpenAI (Azure Endpoints)")
    styled_cost_google = convert_cost_dict_to_table(cost_google, "Google (VertexAI)")
    styled_cost_mistral = convert_cost_dict_to_table(cost_mistral, "MistralAI")
    styled_cost_local = convert_cost_dict_to_table(cost_local, "Local Models")

    return cost_openai, styled_cost_openai, cost_azure, styled_cost_azure, cost_google, styled_cost_google, cost_mistral, styled_cost_mistral, cost_local, styled_cost_local


def content_header():
    col_logo, col_run_1, col_run_2, col_run_3, col_run_4 = st.columns([2,2,2,2,4])
    with col_run_4:
        with st.expander("View Messages and Updates"):
            st.info("***Note:*** If you use VoucherVision frequently, you can change the default values that are auto-populated in the form below. In a text editor or IDE, edit the first few rows in the file `../VoucherVision/vouchervision/VoucherVision_Config_Builder.py`")
        st.info("Please enable LeafMachine2 collage for full-sized images of herbarium vouchers, you will get better results!")
    
    col_test = st.container()

    st.subheader("Overall Progress")
    col_run_info_1 = st.columns([1])[0]
    col_updates_1, col_updates_2 = st.columns([5,1])
    col_json, col_json_WFO, col_json_GEO, col_json_map = st.columns([2, 2, 2, 2])

    with col_run_info_1:
        # Progress
        overall_progress_bar = st.progress(0)
        text_overall = st.empty()  # Placeholder for current step name
        st.subheader('Transcription Progress')
        batch_progress_bar = st.progress(0)
        text_batch = st.empty()  # Placeholder for current step name
        progress_report = ProgressReport(overall_progress_bar, batch_progress_bar, text_overall, text_batch)
        st.session_state['hold_output'] = st.toggle('View Final Transcription')

    with col_logo:
        show_header_welcome()
    
    with col_run_1:
        N_STEPS = 6

        if check_if_usable(is_hf=st.session_state['is_hf']):
            # b_text = f"Start Processing {st.session_state['processing_add_on']} Images" if st.session_state['processing_add_on'] > 1 else f"Start Processing {st.session_state['processing_add_on']} Image"
            # if st.session_state['processing_add_on'] == 0:
            b_text = f"Start Transcription"
            if st.button(b_text, type='primary',use_container_width=True):
                st.session_state['formatted_json'] = {}
                st.session_state['formatted_json_WFO'] = {}
                st.session_state['formatted_json_GEO'] = {}
                st.session_state['json_report'] = JSONReport(col_updates_1, col_json, col_json_WFO, col_json_GEO, col_json_map)
                st.session_state['json_report'].set_JSON(st.session_state['formatted_json'], st.session_state['formatted_json_WFO'], st.session_state['formatted_json_GEO'])
                
                # Define number of overall steps
                progress_report.set_n_overall(N_STEPS)
                progress_report.update_overall(f"Starting VoucherVision...")
            
                # First, write the config file.
                write_config_file(st.session_state.config, st.session_state.dir_home, filename="VoucherVision.yaml")

                path_custom_prompts = os.path.join(st.session_state.dir_home,'custom_prompts',st.session_state.config['leafmachine']['project']['prompt_version'])
                # Call the machine function.
                total_cost = 0.00
                n_failed_OCR = 0
                n_failed_LLM_calls = 0
                # try:
                voucher_vision_output = voucher_vision(None,
                                                    st.session_state.dir_home, 
                                                    path_custom_prompts, 
                                                    None, 
                                                    progress_report,
                                                    st.session_state['json_report'],
                                                    path_api_cost=os.path.join(st.session_state.dir_home,'api_cost','api_cost.yaml'),
                                                    is_hf = st.session_state['is_hf'], 
                                                    is_real_run=True)
                st.session_state['formatted_json'] = voucher_vision_output['last_JSON_response']
                st.session_state['formatted_json_WFO'] = voucher_vision_output['final_WFO_record']
                st.session_state['formatted_json_GEO'] = voucher_vision_output['final_GEO_record']
                total_cost = voucher_vision_output['total_cost']
                n_failed_OCR = voucher_vision_output['n_failed_OCR']
                n_failed_LLM_calls = voucher_vision_output['n_failed_LLM_calls']
                st.session_state['zip_filepath'] = voucher_vision_output['zip_filepath']
                # st.balloons()

                # except Exception as e:
                #     with col_run_4:
                #         st.error(f"Transcription failed. Error: {e}")

                if n_failed_OCR > 0:
                    with col_run_4:
                        st.error(f"Caution:heavy_exclamation_mark: :loudspeaker: {n_failed_LLM_calls} images had a no extractable OCR text :eyes:")

                if n_failed_LLM_calls > 0:
                    with col_run_4:
                        st.error(f"Caution:heavy_exclamation_mark: :loudspeaker: {n_failed_LLM_calls} images had a failed LLM API call :eyes:")
                        st.error(f"Make sure that you have access to the chosen LLM API model. Sometimes certain OpenAI accounts do not have access to all models, for example")
                
                if total_cost:
                    with col_run_4:
                        st.success(f":money_with_wings: This run cost :heavy_dollar_sign:{total_cost:.4f}")
                else:
                    with col_run_4:
                        st.info(f":money_with_wings: This run cost :heavy_dollar_sign:{total_cost:.4f}")
            if st.session_state['zip_filepath']:
                create_download_button(st.session_state['zip_filepath'], col_run_1,key=97863332)
        else:
            st.button("Start Transcription", type='primary', disabled=True)
            with col_run_4:
                st.error(":heavy_exclamation_mark: Required API keys not set. Please visit the 'API Keys' tab and set the Google Vision OCR API key and at least one LLM key.")
      
        if st.session_state['formatted_json']:
            if st.session_state['hold_output']:
                st.session_state['json_report'].set_JSON(st.session_state['formatted_json'], st.session_state['formatted_json_WFO'], st.session_state['formatted_json_GEO'])
                if st.session_state['zip_filepath']:
                    create_download_button(st.session_state['zip_filepath'], col_run_1,key=978633452)
    
 
    
    with col_run_1:
        ct_left, ct_right = st.columns([1,1])
    with ct_left:
        st.button("Refresh", on_click=refresh, use_container_width=True)
    with ct_right:
        try:
            st.page_link(os.path.join("pages","faqs.py"), label="FAQs", icon="❔")
        except:
            st.page_link(os.path.join(os.path.dirname(__file__),"pages","faqs.py"), label="FAQs", icon="❔")

      

    # with col_run_2:
    #     if st.button("Test GPT"):
    #         progress_report.set_n_overall(TestOptionsGPT.get_length())
    #         test_results, JSON_results = run_demo_tests_GPT(progress_report)
    #         with col_test:
    #             display_test_results(test_results, JSON_results, 'gpt')
    #         st.balloons()

    #     if st.button("Test PaLM2"):
    #         progress_report.set_n_overall(TestOptionsPalm.get_length())
    #         test_results, JSON_results = run_demo_tests_Palm(progress_report)
    #         with col_test:
    #             display_test_results(test_results, JSON_results, 'palm')
    #         st.balloons()


    with col_run_2:
        if st.button('Save Current Settings',use_container_width=True):
            if st.session_state.settings_filename:
                config_file_path = os.path.join(st.session_state.dir_home, 'settings', st.session_state['settings_filename'] + '.yaml')
                with open(config_file_path, 'w') as file:
                    yaml.dump(st.session_state.config, file, default_flow_style=False)
                with col_run_4:
                    st.success(f'Current settings saved to {config_file_path}')
            else:
                with col_run_4:
                    st.error('Missing settings file name. Settings not saved.')
                    # st.session_state.config
    with col_run_3:
        st.session_state['settings_filename'] = st.text_input('Setting File Name',placeholder="Settings fileame",label_visibility='collapsed',value=None)



    with col_run_2:
        if st.button('Load Settings',use_container_width=True):
            if st.session_state['loaded_settings_filename']:
                path_load_settings = os.path.join(st.session_state['dir_settings'],st.session_state['loaded_settings_filename'])
                if os.path.exists(path_load_settings) and not None:
                    with open(path_load_settings, 'r') as file:
                        loaded_config = yaml.safe_load(file)
                    st.session_state.config, st.session_state.dir_home = build_VV_config(loaded_cfg=loaded_config)
                    with col_run_4:
                        st.success(f'Loaded settings from {path_load_settings}')
                else:
                    st.error(f'Path to settings file does not exist: {path_load_settings}')
            else:
                with col_run_4:
                    st.warning(f'Filename not selected')


    with col_run_3:
        st.session_state['settings_choice_null'] = 'Select previous settings...'
        st.session_state['dir_settings'] = os.path.join(st.session_state.dir_home, 'settings')
        all_settings_files = [st.session_state['settings_choice_null']] + [f for f in os.listdir(st.session_state['dir_settings']) if f.endswith('.yaml')]
        settings_choice = st.selectbox('Load Previous Settings', all_settings_files,label_visibility='collapsed')
        if settings_choice != st.session_state['settings_choice_null']:
            st.session_state['loaded_settings_filename'] = settings_choice            
        

    with col_run_2:
        if st.button("Check GPU Status",use_container_width=True):
            success, info = test_GPU()

            if success:
                st.balloons()
                with col_run_4:
                    for message in info:
                        st.success(message)
            else:
                with col_run_4:
                    for message in info:
                        st.warning(message)



def content_project_settings(col):
         ### Project
    with col:
        st.header('Project Settings')

        st.session_state.config['leafmachine']['project']['run_name'] = st.text_input("Run name", st.session_state.config['leafmachine']['project'].get('run_name', ''),key=63456)

        if not st.session_state.is_hf:
            st.session_state.config['leafmachine']['project']['dir_output'] = st.text_input("Output directory", st.session_state.config['leafmachine']['project'].get('dir_output', ''))
        

def content_tools():
    st.write("---")
    st.header('Validation Tools')    
    
    tool_WFO = st.session_state.config['leafmachine']['project']['tool_WFO']
    st.session_state.config['leafmachine']['project']['tool_WFO'] = st.checkbox(label="Enable World Flora Online taxonomy verification",
                                                                                      help="",
                                                                                      value=tool_WFO)
    
    tool_GEO = st.session_state.config['leafmachine']['project']['tool_GEO']
    st.session_state.config['leafmachine']['project']['tool_GEO'] = st.checkbox(label="Enable HERE geolocation hints",
                                                                                      help="",
                                                                                      value=tool_GEO)

    tool_wikipedia = st.session_state.config['leafmachine']['project']['tool_wikipedia']
    st.session_state.config['leafmachine']['project']['tool_wikipedia'] = st.checkbox(label="Enable Wikipedia verification",
                                                                                      help="",
                                                                                      value=tool_wikipedia)

def content_llm_cost():
    st.write("---")
    st.header('LLM Cost Calculator')
    # ( n_in/1000 * Input + n_out/1000 * Output ) * n_img = COST
    calculator_1,calculator_2,calculator_3,calculator_4,calculator_5 = st.columns([1,1,1,1,1])     

    st.subheader('Cost Matrix')
    st.markdown('The table shows the cost of each LLM API per 1,000 tokens. An average VoucherVision call uses 2,000 input tokens and receives 500 output tokens.')
    col_cost_1, col_cost_2, col_cost_3, col_cost_4, col_cost_5 = st.columns([1,1,1,1,1])    

    # Load all cost tables if not already done
    if 'all_llm_cost' not in st.session_state:
        st.session_state['all_llm_cost'] = True
        st.session_state['cost_openai'], st.session_state['styled_cost_openai'], st.session_state['cost_azure'], st.session_state['styled_cost_azure'], st.session_state['cost_google'], st.session_state['styled_cost_google'], st.session_state['cost_mistral'], st.session_state['styled_cost_mistral'], st.session_state['cost_local'], st.session_state['styled_cost_local'] = get_all_cost_tables()

    with calculator_1:
        # Combine all model names into a single list
        model_names = []
        for df in [st.session_state['cost_openai'], st.session_state['cost_azure'], st.session_state['cost_google'], st.session_state['cost_mistral'], st.session_state['cost_local']]:
            for key in df.keys():
                model_names.append(key)

        # Create a dropdown for model selection
        selected_model = st.selectbox("Select a model", options=model_names)

    with calculator_2:
        # Create input fields for n_in, n_out, n_img
        n_in = st.number_input("Tokens In", min_value=0, value=2000, step=50)
    with calculator_3:
        n_out = st.number_input("Tokens Out", min_value=0, value=500, step=50)
    with calculator_4:
        n_img = st.number_input("Number of Images", min_value=0, value=1000, step=100)

    # Function to find the model's Input and Output values
    def find_model_values(model, all_dfs):
        for df in all_dfs:
            if model in df.keys():
                return df[model]['in'], df[model]['out']
        return None, None
    
    @st.cache_data
    def show_cost_matrix_1(rounding):
        st.dataframe(st.session_state.styled_cost_openai.format(precision=rounding), hide_index=True,)
    @st.cache_data
    def show_cost_matrix_2(rounding):
        st.dataframe(st.session_state.styled_cost_azure.format(precision=rounding), hide_index=True,)
    @st.cache_data
    def show_cost_matrix_3(rounding):
        st.dataframe(st.session_state.styled_cost_google.format(precision=rounding), hide_index=True,)
    @st.cache_data
    def show_cost_matrix_4(rounding):
        st.dataframe(st.session_state.styled_cost_mistral.format(precision=rounding), hide_index=True,)
    @st.cache_data
    def show_cost_matrix_5(rounding):
        st.dataframe(st.session_state.styled_cost_local.format(precision=rounding), hide_index=True,)

    input_value, output_value = find_model_values(selected_model, 
                                                [st.session_state['cost_openai'], st.session_state['cost_azure'], st.session_state['cost_google'], st.session_state['cost_mistral'], st.session_state['cost_local']])
    if input_value is not None and output_value is not None:
        cost = (n_in/1000 * input_value + n_out/1000 * output_value) * n_img
    with calculator_5:
        st.text_input("Total Cost", f"${round(cost,2)}") # selected_model
    
    rounding = 4
    with col_cost_1:
        show_cost_matrix_1(rounding)
    with col_cost_2:
        show_cost_matrix_2(rounding)
    with col_cost_3:
        show_cost_matrix_3(rounding)
    with col_cost_4:
        show_cost_matrix_4(rounding)
    with col_cost_5:
        show_cost_matrix_5(rounding)




def content_prompt_and_llm_version():
    st.header('Prompt Version')
    col_prompt_1, col_prompt_2 = st.columns([4,2])              
    with col_prompt_1:
        available_prompts = get_prompt_versions(st.session_state.config['leafmachine']['LLM_version'])
        

        if available_prompts:
            default_version = available_prompts[0]  ######### Can be configured by user #################################################################
            selected_version = st.session_state.config['leafmachine']['project'].get('prompt_version', default_version)
            if selected_version not in available_prompts:
                selected_version = default_version
            st.session_state.config['leafmachine']['project']['prompt_version'] = st.selectbox("Prompt Version", available_prompts, index=available_prompts.index(selected_version),label_visibility='collapsed')

    with col_prompt_2:
        # if st.button("Build Custom LLM Prompt"):
        try:
            st.page_link(os.path.join("pages","prompt_builder.py"), label="Prompt Builder", icon="🚧")
        except:
            st.page_link(os.path.join(os.path.dirname(__file__),"pages","prompt_builder.py"), label="Prompt Builder", icon="🚧")


    st.header('LLM Version')
    col_llm_1, col_llm_2 = st.columns([4,2])  
     
    with col_llm_1:
        GUI_MODEL_LIST = ModelMaps.get_models_gui_list()
        st.session_state.config['leafmachine']['LLM_version'] = st.selectbox("LLM version", GUI_MODEL_LIST, index=GUI_MODEL_LIST.index(st.session_state.config['leafmachine'].get('LLM_version', ModelMaps.MODELS_GUI_DEFAULT)))
        st.markdown("""
Based on preliminary results, the following models perform the best. We are currently running tests of all possible OCR + LLM + Prompt combinations to create recipes for different workflows.
- Any Mistral model e.g., `Mistral Large`          
- `PaLM 2 text-bison@001`
- `GPT 4 Turbo 1106-preview`
- `GPT 3.5 Turbo`
- `LOCAL Mixtral 7Bx8 Instruct`
- `LOCAL Mixtral 7B Instruct`

Larger models (e.g., `GPT 4`, `GPT 4 32k`, `Gemini Pro`) do not necessarily perform better for these tasks. MistralAI models exceeded our expectations and perform extremely well. PaLM 2 text-bison@001 also seems to consistently out-perform Gemini Pro.
                    
The `SLTPvA_short.yaml` prompt also seems to work better with smaller LLMs (e.g., Mistral Tiny). Alternatively, enable double OCR to help the LLM focus on the OCR text given a longer prompt.
                    
Models `GPT 3.5 Turbo` and `GPT 4 Turbo 0125-preview` enable OpenAI's [JSON mode](https://platform.openai.com/docs/guides/text-generation/json-mode), which helps prevent JSON errors. All models implement Langchain JSON parsing too, so JSON errors are rare for most models.""")


def content_api_check():
    # In your Streamlit layout
    # Create two columns for the header and the button
    col_llm_2a, col_llm_2b = st.columns([6, 2])  # Adjust the ratio as needed

    # Place the header in the first column
    with col_llm_2a:
        st.header('Available APIs')

        # Display API key status
        display_api_key_status(col_llm_2a)
    
        # Place the button in the second column, right-justified
        # with col_llm_2b:
        if st.button("Re-Check API Keys"):
            st.session_state['API_checked'] = False
            st.session_state['API_rechecked'] = True
            st.rerun()
        # with col_llm_2c:
        if not st.session_state.is_hf:
            if st.button("Edit API Keys"):
                st.session_state.proceed_to_private = True
                st.rerun()
                


def adjust_ocr_options_based_on_capability(capability_score):
    llava_models_requirements = {
        "liuhaotian/llava-v1.6-mistral-7b": {"full": 18, "4bit": 9},
        "liuhaotian/llava-v1.6-34b": {"full": 70, "4bit": 25},
        "liuhaotian/llava-v1.6-vicuna-13b": {"full": 33, "4bit": 15},
        "liuhaotian/llava-v1.6-vicuna-7b": {"full": 20, "4bit": 10},
    }
    if capability_score == 'no_gpu':
        return False
    else:
        capability_score_n = int(capability_score.split("_")[1].split("GB")[0])
        supported_models = [model for model, reqs in llava_models_requirements.items()
                            if reqs["full"] <= capability_score_n or reqs["4bit"] <= capability_score_n]

        # If no models are supported, disable the LLaVA option
        if not supported_models:
            # Assuming the LLaVA option is the last in your list
            return False  # Indicate LLaVA is not supported
        return True  # Indicate LLaVA is supported



def content_ocr_method():
    st.write("---")
    st.header('OCR Methods')   
    with st.expander("Read about available OCR methods"):
        st.subheader("Overview")
        st.markdown("""VoucherVision can use the `Google Vision API`, `CRAFT` text detection + `trOCR`, and all `LLaVA v1.6` models. 
                    VoucherVision sends the OCR inside of the LLM prompt. We have found that sending multiple copies, or multiple version of 
                    the OCR text to the LLM helps the LLM maintain focus on the OCR text -- our prompts are quite long and the OCR text is reletively short. 
                    Below you can choose the OCR method/s. You can 'stack' all of the methods if you want, which may improve results because
                    different OCR methods have different strengths, giving the LLM more information to work with. Alternative.y, you can select a single method and 
                    send 2 copies to the LLM by enabling that option below.""")
        st.subheader("Google Vision API")
        st.markdown("""`Google Vision API` provides several OCR methods. We use the `document_text_detection()` service, designed to handle dense text blocks. 
                    The `Handwritten` option CAN also be used for printed and mixed labels, but it is also optimized for handwriting. `Handwritten` uses the Google Vision Beta service. 
                    This is the recommended default OCR method. `Printed` uses the regular Google Vision service and works well for general use. 
                    You can also supplement Google Vision OCR by enabling trOCR, which is optimized for handwriting. trOCR requires segmented word images, which is provided as part
                    of the Google Vision metadata. trOCR does not require a GPU, but it runs *much* faster with a GPU.""")
        st.subheader("LLaVA")
        st.markdown("""`LLaVA` can replace Google Vision APIs. It requires the use of LeafMachine2 collage, or images that are majority text. It may struggle with very
                    long texts. LLaVA models are multimodal, meaning that we can upload the image and the model will transcribe (and even parse) the text all at once. With VoucherVision, we 
                    support 4 different LLaVA models of varying sizes, some are much more capable than others. These models tend to outperform all other OCR methods for handwriting. 
                    LLaVA models are run locally and require powerful GPUs to implement. While LLaVA models are capable of handling both the OCR and text parsing tasks all in one step, 
                    this option only uses LLaVA to transcribe all of the text in the image and still uses a separate LLM to parse text in to categories. """)
        st.subheader("CRAFT + trOCR")
        st.markdown("""This pairing can replace Google Vision APIs and is computationally lighter than LLaVA. `CRAFT` locates text, segments lines of text, and feeds the segmentations 
                    to the `trOCR` transformer model. This pairing requires at least an 8 GB GPU. trOCR is a Microsoft model optimized for handwriting. The base model is not as accurate as 
                    LLaVA or Google Vision, but if you have a trOCR-based model, let us know and we will add support.""")

    c1, c2 = st.columns([4,4])   

    # Check if LLaVA models are supported based on capability score
    llava_supported = adjust_ocr_options_based_on_capability(st.session_state.capability_score)
    if llava_supported:
        st.success("LLaVA models are supported on this computer")
    else:
        st.warning("LLaVA models are NOT supported on this computer. Requires a GPU with at least 12 GB of VRAM.")

    demo_text_h = f"Google_OCR_Handwriting:\nHERBARIUM OF MARCUS W. LYON , JR . Tracaulon sagittatum Indiana : Porter Co. incal Springs edge wet subdunal woods 1927 TX 11 Ilowers pink UNIVERSITE HERBARIUM MICH University of Michigan Herbarium 1439649 copyright reserved PERSICARIA FEB 2 6 1965 cm "
    demo_text_tr = f"trOCR:\nherbarium of marcus w. lyon jr. : : : tracaulon sagittatum indiana porter co. incal springs TX 11 Ilowers pink  1439649 copyright reserved D H U Q "
    demo_text_p = f"Google_OCR_Printed:\nTracaulon sagittatum Indiana : Porter Co. incal Springs edge wet subdunal woods 1927  Ilowers pink 1439649 copyright reserved PERSICARIA FEB 2 6 1965 cm "
    demo_text_b = demo_text_h + '\n' + demo_text_p
    demo_text_trb = demo_text_h + '\n' + demo_text_p + '\n' + demo_text_tr
    demo_text_trh = demo_text_h + '\n' + demo_text_tr
    demo_text_trp = demo_text_p + '\n' + demo_text_tr

    options = ["Google Vision Handwritten", "Google Vision Printed", "CRAFT + trOCR","LLaVA"]
    options_llava = ["llava-v1.6-mistral-7b", "llava-v1.6-34b", "llava-v1.6-vicuna-13b", "llava-v1.6-vicuna-7b",]
    options_llava_bit = ["full", "4bit",]
    captions_llava = [
        "Full Model: 18 GB VRAM, 4-bit: 9 GB VRAM", 
        "Full Model: 70 GB VRAM, 4-bit: 25 GB VRAM", 
        "Full Model: 33 GB VRAM, 4-bit: 15 GB VRAM",
        "Full Model: 20 GB VRAM, 4-bit: 10 GB VRAM",
    ]
    captions_llava_bit = ["Full Model","4-bit Quantization",]
    # Get the current OCR option from session state
    OCR_option = st.session_state.config['leafmachine']['project']['OCR_option']
    OCR_option_llava = st.session_state.config['leafmachine']['project']['OCR_option_llava']
    OCR_option_llava_bit = st.session_state.config['leafmachine']['project']['OCR_option_llava_bit']
    double_OCR = st.session_state.config['leafmachine']['project']['double_OCR']

    # Map the OCR option to the index in options list
    # You need to define the mapping based on your application's logic
    default_index = 0  # Default to 0 if option not found
    default_index_llava = 0  # Default to 0 if option not found
    default_index_llava_bit = 0
    with c1:
        st.subheader("API Methods (Google Vision)")
        st.write("Using APIs for OCR allows VoucherVision to run on most computers.")

        st.session_state.config['leafmachine']['project']['double_OCR'] = st.checkbox(label="Send 2 copies of the OCR to the LLM",
                                                                                      help="This can help the LLMs focus attention on the OCR and not get lost in the longer instruction text",
                                                                                      value=double_OCR)

        # Create the radio button
        # OCR_option_select = st.radio(
        #     "Select the OCR Method",
        #     options,
        #     index=default_index,
        #     help="",captions=captions,
        # )
        default_values = [options[default_index]]
        OCR_option_select = st.multiselect(
            "Select the OCR Method(s)",
            options=options,
            default=default_values,
            help="Select one or more OCR methods."
        )
        # st.session_state.config['leafmachine']['project']['OCR_option'] = OCR_option_select

        # Handling multiple selections (Example logic)
        OCR_options = {
            "Google Vision Handwritten": 'hand',
            "Google Vision Printed": 'normal',
            "CRAFT + trOCR": 'CRAFT',
            "LLaVA": 'LLaVA',
        }

        # Map selected options to their corresponding internal representations
        selected_OCR_options = [OCR_options[option] for option in OCR_option_select]

        # Assuming you need to use these mapped values elsewhere in your application
        st.session_state.config['leafmachine']['project']['OCR_option'] = selected_OCR_options


    with c2:
        st.subheader("Local Methods")
        st.write("Local methods are free, but require a capable GPU. ")
        

    st.write("Supplement Google Vision OCR with trOCR (handwriting OCR) using `microsoft/trocr-base-handwritten`. This option requires Google Vision API and a GPU.")
    if 'CRAFT' in selected_OCR_options:
        do_use_trOCR = st.checkbox("Enable trOCR", value=True, key="Enable trOCR1",disabled=True)#,disabled=st.session_state['lacks_GPU'])
    else:
        do_use_trOCR = st.checkbox("Enable trOCR", value=st.session_state.config['leafmachine']['project']['do_use_trOCR'],key="Enable trOCR2")#,disabled=st.session_state['lacks_GPU'])
        st.session_state.config['leafmachine']['project']['do_use_trOCR'] = do_use_trOCR

    if do_use_trOCR:
        # st.session_state.config['leafmachine']['project']['trOCR_model_path'] = "microsoft/trocr-large-handwritten"
        default_trOCR_model_path = st.session_state.config['leafmachine']['project']['trOCR_model_path']
        user_input_trOCR_model_path = st.text_input("trOCR Hugging Face model path. MUST be a fine-tuned version of 'microsoft/trocr-base-handwritten' or 'microsoft/trocr-large-handwritten', or a microsoft trOCR model.", value=default_trOCR_model_path)
        if st.session_state.config['leafmachine']['project']['trOCR_model_path'] != user_input_trOCR_model_path:
            is_valid_mp = is_valid_huggingface_model_path(user_input_trOCR_model_path)
            if not is_valid_mp:
                st.error(f"The Hugging Face model path {user_input_trOCR_model_path} is not valid. Please revise.")
            else:
                st.session_state.config['leafmachine']['project']['trOCR_model_path'] = user_input_trOCR_model_path

    if 'LLaVA' in selected_OCR_options:
        OCR_option_llava = st.radio(
            "Select the LLaVA version",
            options_llava,
            index=default_index_llava,
            help="",captions=captions_llava,
        )
        st.session_state.config['leafmachine']['project']['OCR_option_llava'] = OCR_option_llava

        OCR_option_llava_bit = st.radio(
            "Select the LLaVA quantization level",
            options_llava_bit,
            index=default_index_llava_bit,
            help="",captions=captions_llava_bit,
        )
        st.session_state.config['leafmachine']['project']['OCR_option_llava_bit'] = OCR_option_llava_bit
    
    

    # st.markdown("Below is an example of what the LLM would see given the choice of OCR ensemble. One, two, or three version of OCR can be fed into the LLM prompt. Typically, 'printed + handwritten' works well. If you have a GPU then you can enable trOCR.")
    # if (OCR_option == 'hand') and not do_use_trOCR:
    #     st.text_area(label='Handwritten/Printed',placeholder=demo_text_h,disabled=True, label_visibility='visible', height=150)
    # elif (OCR_option == 'normal') and not do_use_trOCR:
    #     st.text_area(label='Printed',placeholder=demo_text_p,disabled=True, label_visibility='visible', height=150)
    # elif (OCR_option == 'both') and not do_use_trOCR:
    #     st.text_area(label='Handwritten/Printed + Printed',placeholder=demo_text_b,disabled=True, label_visibility='visible', height=150)
    # elif (OCR_option == 'both') and do_use_trOCR:
    #     st.text_area(label='Handwritten/Printed + Printed + trOCR',placeholder=demo_text_trb,disabled=True, label_visibility='visible', height=150)
    # elif (OCR_option == 'normal') and do_use_trOCR:
    #     st.text_area(label='Printed + trOCR',placeholder=demo_text_trp,disabled=True, label_visibility='visible', height=150)
    # elif (OCR_option == 'hand') and do_use_trOCR:
    #     st.text_area(label='Handwritten/Printed + trOCR',placeholder=demo_text_trh,disabled=True, label_visibility='visible', height=150)

def is_valid_huggingface_model_path(model_path):
    from transformers import AutoConfig

    try:
        # Attempt to load the model configuration from Hugging Face Model Hub
        config = AutoConfig.from_pretrained(model_path)
        return True  # If the configuration loads successfully, the model path is valid
    except Exception as e:
        # If loading the model configuration fails, the model path is not valid
        return False
    
@st.cache_data
def show_collage():
    # Load the image only if it's not already in the session state
    if "demo_collage" not in st.session_state:
        # ba = os.path.join(st.session_state.dir_home, 'demo', 'ba', 'ba2.png')
        ba = os.path.join(st.session_state.dir_home, 'demo', 'ba', 'ba2.png')
        st.session_state["demo_collage"] = Image.open(ba)
    with st.expander(":frame_with_picture: View an example of the LeafMachine2 collage image"):
        st.image(st.session_state["demo_collage"], caption='LeafMachine2 Collage', output_format="PNG")

@st.cache_data
def show_ocr():
    if "demo_overlay" not in st.session_state:
        # ocr = os.path.join(st.session_state.dir_home,'demo', 'ba','ocr.png')
        ocr = os.path.join(st.session_state.dir_home,'demo', 'ba','ocr2.png')
        st.session_state["demo_overlay"] = Image.open(ocr)
    
    with st.expander(":frame_with_picture: View an example of the OCR overlay image"):
        st.image(st.session_state["demo_overlay"], caption='OCR Overlay Images', output_format = "PNG")
        # st.image(st.session_state["demo_overlay"], caption='OCR Overlay Images', output_format = "JPEG")

def content_collage_overlay():
    st.markdown("---")
    col_collage, col_overlay = st.columns([4,4])   
    
    

    with col_collage:
        st.header('LeafMachine2 Label Collage')    
        st.info("NOTE: We strongly recommend enabling LeafMachine2 cropping if your images are full sized herbarium sheet. Often, the OCR algorithm struggles with full sheets, but works well with the collage images. We have disabled the collage by default for this Hugging Face Space because the Space lacks a GPU and the collage creation takes a bit longer.")
        default_crops = st.session_state.config['leafmachine']['cropped_components']['save_cropped_annotations']
        st.markdown("Prior to transcription, use LeafMachine2 to crop all labels from input images to create label collages for each specimen image. Showing just the text labels to the OCR algorithms significantly improves performance. This runs slowly on the free Hugging Face Space, but runs quickly with a fast CPU or any GPU.")
        st.markdown("Images that are mostly text (like a scanned notecard, or already cropped images) do not require LM2 collage.")

        if st.session_state.is_hf:
            st.session_state.config['leafmachine']['use_RGB_label_images'] = st.checkbox(":rainbow[Use LeafMachine2 label collage for transcriptions]", st.session_state.config['leafmachine'].get('use_RGB_label_images', False), key='do make collage hf')
        else:
            st.session_state.config['leafmachine']['use_RGB_label_images'] = st.checkbox(":rainbow[Use LeafMachine2 label collage for transcriptions]", st.session_state.config['leafmachine'].get('use_RGB_label_images', True), key='do make collage local')


        option_selected_crops = st.multiselect(label="Components to crop",  
                options=['ruler', 'barcode','label', 'colorcard','map','envelope','photo','attached_item','weights',
                'leaf_whole', 'leaf_partial', 'leaflet', 'seed_fruit_one', 'seed_fruit_many', 'flower_one', 'flower_many', 'bud','specimen','roots','wood'],default=default_crops)
        st.session_state.config['leafmachine']['cropped_components']['save_cropped_annotations'] = option_selected_crops
        show_collage()

    with col_overlay:
        st.header('OCR Overlay Image')    

        st.markdown('This will plot bounding boxes around all text that Google Vision was able to detect. If there are no boxes around text, then the OCR failed, so that missing text will not be seen by the LLM when it is creating the JSON object. The created image will be viewable in the VoucherVisionEditor.')
        
        do_create_OCR_helper_image = st.checkbox("Create image showing an overlay of the OCR detections",value=st.session_state.config['leafmachine']['do_create_OCR_helper_image'],disabled=True)
        st.session_state.config['leafmachine']['do_create_OCR_helper_image'] = do_create_OCR_helper_image
        show_ocr()
        



def content_archival_components():
    st.write("---")
    st.header('Archival Components')
    ACD_version = st.selectbox("Archival Component Detector (ACD) Version", ["Version 2.1", "Version 2.2"])
    
    ACD_confidence_default = int(st.session_state.config['leafmachine']['archival_component_detector']['minimum_confidence_threshold'] * 100)
    ACD_confidence = st.number_input("ACD Confidence Threshold (%)", min_value=0, max_value=100,value=ACD_confidence_default)
    st.session_state.config['leafmachine']['archival_component_detector']['minimum_confidence_threshold'] = float(ACD_confidence/100)

    st.session_state.config['leafmachine']['archival_component_detector']['do_save_prediction_overlay_images'] = st.checkbox("Save Archival Prediction Overlay Images", st.session_state.config['leafmachine']['archival_component_detector'].get('do_save_prediction_overlay_images', True))
    
    st.session_state.config['leafmachine']['archival_component_detector']['ignore_objects_for_overlay'] = st.multiselect("Hide Archival Components in Prediction Overlay Images",  
                ['ruler', 'barcode','label', 'colorcard','map','envelope','photo','attached_item','weights',],
                default=[])

    # Depending on the selected version, set the configuration
    if ACD_version == "Version 2.1":
        st.session_state.config['leafmachine']['archival_component_detector']['detector_type'] = 'Archival_Detector'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_version'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_iteration'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_weights'] = 'best.pt'
    elif ACD_version == "Version 2.2": #TODO update this to version 2.2
        st.session_state.config['leafmachine']['archival_component_detector']['detector_type'] = 'Archival_Detector'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_version'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_iteration'] = 'PREP_final'
        st.session_state.config['leafmachine']['archival_component_detector']['detector_weights'] = 'best.pt'



def content_processing_options():
    st.write("---")
    st.header('Processing Options')
    col_processing_1, col_processing_2 = st.columns([2,2,])
    with col_processing_1:
        st.subheader('Compute Options')
        st.session_state.config['leafmachine']['project']['num_workers'] = st.number_input("Number of CPU workers", value=st.session_state.config['leafmachine']['project'].get('num_workers', 1), disabled=False)
        st.session_state.config['leafmachine']['project']['batch_size'] = st.number_input("Batch size", value=st.session_state.config['leafmachine']['project'].get('batch_size', 500), help='Sets the batch size for the LeafMachine2 cropping. If computer RAM is filled, lower this value to ~100.')
        st.session_state.config['leafmachine']['project']['pdf_conversion_dpi'] = st.number_input("PDF conversion DPI", value=st.session_state.config['leafmachine']['project'].get('pdf_conversion_dpi', 100), help='DPI of the JPG created from the page of a PDF. 100 should be fine for most cases, but 200 or 300 might be better for large images.')
    
    with col_processing_2:
        st.subheader('Filename Prefix Handling')
        st.session_state.config['leafmachine']['project']['prefix_removal'] = st.text_input("Remove prefix from catalog number", st.session_state.config['leafmachine']['project'].get('prefix_removal', ''),placeholder="e.g. MICH-V-")
        st.session_state.config['leafmachine']['project']['suffix_removal'] = st.text_input("Remove suffix from catalog number", st.session_state.config['leafmachine']['project'].get('suffix_removal', ''),placeholder="e.g. _B")
        st.session_state.config['leafmachine']['project']['catalog_numerical_only'] = st.checkbox("Require 'Catalog Number' to be numerical only", st.session_state.config['leafmachine']['project'].get('catalog_numerical_only', True))
    
    ### Logging and Image Validation - col_v1
    st.write("---")
    col_v1, col_v2 = st.columns(2)

    with col_v1:
        st.header('Logging and Image Validation')    
        option_check_illegal = st.checkbox("Check for illegal filenames", value=st.session_state.config['leafmachine']['do']['check_for_illegal_filenames'])
        st.session_state.config['leafmachine']['do']['check_for_illegal_filenames'] = option_check_illegal

        option_skip_vertical = st.checkbox("Skip vertical image requirement (e.g. horizontal PDFs)", value=st.session_state.config['leafmachine']['do']['skip_vertical'],help='LeafMachine2 label collage requires images to have vertical aspect ratios for stability. If your input images have a horizonatal aspect ratio, try skipping the vertical requirement first, look for strange behavior, and then reassess. If your image/PDFs are already closeups and you do not need the collage, then skipping the vertical requirement is the right choice.')
        st.session_state.config['leafmachine']['do']['skip_vertical'] = option_skip_vertical

        st.session_state.config['leafmachine']['do']['check_for_corrupt_images_make_vertical'] = st.checkbox("Check for corrupt images", st.session_state.config['leafmachine']['do'].get('check_for_corrupt_images_make_vertical', True),disabled=True)
        
        st.session_state.config['leafmachine']['print']['verbose'] = st.checkbox("Print verbose", st.session_state.config['leafmachine']['print'].get('verbose', True))
        st.session_state.config['leafmachine']['print']['optional_warnings'] = st.checkbox("Show optional warnings", st.session_state.config['leafmachine']['print'].get('optional_warnings', True))
        
        log_level = st.session_state.config['leafmachine']['logging'].get('log_level', None)
        log_level_display = log_level if log_level is not None else 'default'
        selected_log_level = st.selectbox("Logging Level", ['default', 'DEBUG', 'INFO', 'WARNING', 'ERROR'], index=['default', 'DEBUG', 'INFO', 'WARNING', 'ERROR'].index(log_level_display))
        
        if selected_log_level == 'default':
            st.session_state.config['leafmachine']['logging']['log_level'] = None
        else:
            st.session_state.config['leafmachine']['logging']['log_level'] = selected_log_level

    with col_v2:
        

        # print(f"Number of GPUs: {st.session_state.num_gpus}")
        # print(f"GPU Details: {st.session_state.gpu_dict}")
        # print(f"Total VRAM: {st.session_state.total_vram_gb} GB")
        # print(f"Capability Score: {st.session_state.capability_score}")

        st.header('System GPU Information')
        st.markdown(f"**Torch CUDA:** {torch.cuda.is_available()}")
        st.markdown(f"**Number of GPUs:** {st.session_state.num_gpus}")

        if st.session_state.num_gpus > 0:
            st.markdown("**GPU Details:**")
            for gpu_id, vram in st.session_state.gpu_dict.items():
                st.text(f"{gpu_id}: {vram}")
            
            st.markdown(f"**Total VRAM:** {st.session_state.total_vram_gb} GB")
            st.markdown(f"**Capability Score:** {st.session_state.capability_score}")
        else:
            st.warning("No GPUs detected in the system.")



def content_tab_domain():
    st.write("---")
    st.header('Embeddings Database')
    col_emb_1, col_emb_2 = st.columns([4,2])  
    with col_emb_1:
        st.markdown(
            """
            VoucherVision includes the option of using domain knowledge inside of the dynamically generated prompts. The OCR text is queried against a database of existing label transcriptions. The most similar existing transcriptions act as an example of what the LLM should emulate and are shown to the LLM as JSON objects. VoucherVision uses cosine similarity search to return the most similar existing transcription.
            - Note: Using domain knowledge may increase the chance that foreign text is included in the final transcription  
            - Disabling this feature will show the LLM multiple examples of an empty JSON skeleton structure instead
            - Enabling this option requires a GPU with at least 8GB of VRAM
            - The domain knowledge files can be located in the directory "../VoucherVision/domain_knowledge". On first run the embeddings database must be created, which takes time. If the database creation runs each time you use VoucherVision, then something is wrong.
            """
            )
            
        st.write(f"Domain Knowledge is only available for the following prompts:")
        for available_prompts in ModelMaps.PROMPTS_THAT_NEED_DOMAIN_KNOWLEDGE:
            st.markdown(f"- {available_prompts}")
        
        if st.session_state.config['leafmachine']['project']['prompt_version'] in ModelMaps.PROMPTS_THAT_NEED_DOMAIN_KNOWLEDGE:
            st.session_state.config['leafmachine']['project']['use_domain_knowledge'] = st.checkbox("Use domain knowledge", True, disabled=True)
        else:
            st.session_state.config['leafmachine']['project']['use_domain_knowledge'] = st.checkbox("Use domain knowledge", False, disabled=True)

        st.write("")
        if st.session_state.config['leafmachine']['project']['use_domain_knowledge']:
            st.session_state.config['leafmachine']['project']['embeddings_database_name'] = st.text_input("Embeddings database name (only use underscores)", st.session_state.config['leafmachine']['project'].get('embeddings_database_name', ''))
            st.session_state.config['leafmachine']['project']['build_new_embeddings_database'] = st.checkbox("Build *new* embeddings database", st.session_state.config['leafmachine']['project'].get('build_new_embeddings_database', False))
            st.session_state.config['leafmachine']['project']['path_to_domain_knowledge_xlsx'] = st.text_input("Path to domain knowledge CSV file (will be used to create new embeddings database)", st.session_state.config['leafmachine']['project'].get('path_to_domain_knowledge_xlsx', ''))
        else:
            st.session_state.config['leafmachine']['project']['embeddings_database_name'] = st.text_input("Embeddings database name (only use underscores)", st.session_state.config['leafmachine']['project'].get('embeddings_database_name', ''), disabled=True)
            st.session_state.config['leafmachine']['project']['build_new_embeddings_database'] = st.checkbox("Build *new* embeddings database", st.session_state.config['leafmachine']['project'].get('build_new_embeddings_database', False), disabled=True)
            st.session_state.config['leafmachine']['project']['path_to_domain_knowledge_xlsx'] = st.text_input("Path to domain knowledge CSV file (will be used to create new embeddings database)", st.session_state.config['leafmachine']['project'].get('path_to_domain_knowledge_xlsx', ''), disabled=True)



def content_space_saver():
    st.write("---")
    st.subheader("Space Saving Options")
    col_ss_1, col_ss_2 = st.columns([2,2])
    with col_ss_1:
        st.write("Several folders are created and populated with data during the VoucherVision transcription process.")
        st.write("Below are several options that will allow you to automatically delete temporary files that you may not need for everyday operations.")
        st.write("VoucherVision creates the following folders. Folders marked with a :star: are required if you want to use VoucherVisionEditor for quality control.")
        st.write("`../[Run Name]/Archival_Components`")
        st.write("`../[Run Name]/Config_File`")
        st.write("`../[Run Name]/Cropped_Images` :star:")
        st.write("`../[Run Name]/Logs`")
        st.write("`../[Run Name]/Original_Images` :star:")
        st.write("`../[Run Name]/Transcription` :star:")
    with col_ss_2:
        st.session_state.config['leafmachine']['project']['delete_temps_keep_VVE'] = st.checkbox("Delete Temporary Files (KEEP files required for VoucherVisionEditor)", st.session_state.config['leafmachine']['project'].get('delete_temps_keep_VVE', False))
        st.session_state.config['leafmachine']['project']['delete_all_temps'] = st.checkbox("Keep only the final transcription file", st.session_state.config['leafmachine']['project'].get('delete_all_temps', False),help="*WARNING:* This limits your ability to do quality assurance. This will delete all folders created by VoucherVision, leaving only the `transcription.xlsx` file.")



#################################################################################################################################################
# render_expense_report_summary #################################################################################################################
#################################################################################################################################################
@st.cache_data
def render_expense_report_summary():
    expense_summary = st.session_state.expense_summary
    expense_report = st.session_state.expense_report
    st.header('Expense Report Summary')

    if not expense_summary:
        st.warning('No expense report data available.')
    else:
        st.metric(label="Total Cost", value=f"${round(expense_summary['total_cost_sum'], 4):,}")
        col1, col2 = st.columns(2)

        # Run count and total costs
        with col1:
            st.metric(label="Run Count", value=expense_summary['run_count'])
            st.metric(label="Tokens In", value=f"{expense_summary['tokens_in_sum']:,}")

        # Token information
        with col2:
            st.metric(label="Total Images", value=expense_summary['n_images_sum'])
            st.metric(label="Tokens Out", value=f"{expense_summary['tokens_out_sum']:,}")


        # Calculate cost proportion per image for each API version
        st.subheader('Average Cost per Image by API Version')
        cost_labels = []
        cost_values = []
        total_images = 0
        cost_per_image_dict = {}
        # Iterate through the expense report to accumulate costs and image counts
        for index, row in expense_report.iterrows():
            api_version = row['api_version']
            total_cost = row['total_cost']
            n_images = row['n_images']
            total_images += n_images  # Keep track of total images processed
            if api_version not in cost_per_image_dict:
                cost_per_image_dict[api_version] = {'total_cost': 0, 'n_images': 0}
            cost_per_image_dict[api_version]['total_cost'] += total_cost
            cost_per_image_dict[api_version]['n_images'] += n_images

        api_versions = list(cost_per_image_dict.keys())
        colors = [ModelMaps.COLORS_EXPENSE_REPORT[version] if version in ModelMaps.COLORS_EXPENSE_REPORT else '#DDDDDD' for version in api_versions]
        
        # Calculate the cost per image for each API version
        for version, cost_data in cost_per_image_dict.items():
            total_cost = cost_data['total_cost']
            n_images = cost_data['n_images']
            # Calculate the cost per image for this version
            cost_per_image = total_cost / n_images if n_images > 0 else 0
            cost_labels.append(version)
            cost_values.append(cost_per_image)
        # Generate the pie chart
        cost_pie_chart = go.Figure(data=[go.Pie(labels=cost_labels, values=cost_values, hole=.3)])
        # Update traces for custom text in hoverinfo, displaying cost with a dollar sign and two decimal places
        cost_pie_chart.update_traces(
            marker=dict(colors=colors),
            text=[f"${value:.4f}" for value in cost_values],  # Formats the cost as a string with a dollar sign and two decimals
            textinfo='percent+label',
            hoverinfo='label+percent+text'  # Adds custom text (formatted cost) to the hover information
        )
        st.plotly_chart(cost_pie_chart, use_container_width=True)



        st.subheader('Proportion of Total Cost by API Version')
        cost_labels = []
        cost_proportions = []
        total_cost_by_version = {}
        # Sum the total cost for each API version
        for index, row in expense_report.iterrows():
            api_version = row['api_version']
            total_cost = row['total_cost']
            if api_version not in total_cost_by_version:
                total_cost_by_version[api_version] = 0
            total_cost_by_version[api_version] += total_cost
        # Calculate the combined total cost for all versions
        combined_total_cost = sum(total_cost_by_version.values())
        # Calculate the proportion of total cost for each API version
        for version, total_cost in total_cost_by_version.items():
            proportion = (total_cost / combined_total_cost) * 100 if combined_total_cost > 0 else 0
            cost_labels.append(version)
            cost_proportions.append(proportion)
        # Generate the pie chart
        cost_pie_chart = go.Figure(data=[go.Pie(labels=cost_labels, values=cost_proportions, hole=.3)])
        # Update traces for custom text in hoverinfo
        cost_pie_chart.update_traces(
            marker=dict(colors=colors),
            text=[f"${cost:.4f}" for cost in total_cost_by_version.values()],  # This will format the cost to 2 decimal places
            textinfo='percent+label',
            hoverinfo='label+percent+text'  # This tells Plotly to show the label, percent, and custom text (cost) on hover
        )
        st.plotly_chart(cost_pie_chart, use_container_width=True)

        # API version usage percentages pie chart
        st.subheader('Runs by API Version')
        api_versions = list(expense_summary['api_version_percentages'].keys())
        percentages = [expense_summary['api_version_percentages'][version] for version in api_versions]
        pie_chart = go.Figure(data=[go.Pie(labels=api_versions, values=percentages, hole=.3)])
        pie_chart.update_layout(margin=dict(t=0, b=0, l=0, r=0))
        pie_chart.update_traces(marker=dict(colors=colors),)
        st.plotly_chart(pie_chart, use_container_width=True)


def content_less_used():
    st.write('---')
    st.write(':octagonal_sign: ***NOTE:*** Settings below are not relevant for most projects. Some settings below may not be reflected in saved settings files and would need to be set each time.')


#################################################################################################################################################
# Sidebar #######################################################################################################################################
#################################################################################################################################################
def sidebar_content():
    if not os.path.exists(os.path.join(st.session_state.dir_home,'expense_report')):
        validate_dir(os.path.join(st.session_state.dir_home,'expense_report'))
    expense_report_path = os.path.join(st.session_state.dir_home, 'expense_report', 'expense_report.csv')

    if os.path.exists(expense_report_path):
        # File exists, proceed with summarization
        st.session_state.expense_summary, st.session_state.expense_report = summarize_expense_report(expense_report_path)
        render_expense_report_summary()  
    else:
        # File does not exist, handle this case appropriately
        # For example, you could set the session state variables to None or an empty value
        st.session_state.expense_summary, st.session_state.expense_report = None, None
        st.header('Expense Report Summary')
        st.write('Available after first run...')


#################################################################################################################################################
# Routing Function ##############################################################################################################################
#################################################################################################################################################

def main():
    with st.sidebar:
        sidebar_content()
    # Main App
    content_header()
    
    col_input, col_gallery = st.columns([4,8])
    content_project_settings(col_input)
    content_input_images(col_input, col_gallery)


    col3, col4 = st.columns([1,1])
    with col3:
        content_prompt_and_llm_version()
    with col4:
        content_api_check()

    content_ocr_method()

    content_collage_overlay()
    content_tools()
    content_llm_cost()
    content_processing_options()
    content_less_used()
    with st.expander("View additional settings"):
        content_archival_components()
        content_space_saver()


#################################################################################################################################################
# Main ##########################################################################################################################################
#################################################################################################################################################
do_print_profiler = False
if st.session_state['is_hf']:
    # if st.session_state.proceed_to_build_llm_prompt:
    #     build_LLM_prompt_config()
    if st.session_state.proceed_to_main:
        if do_print_profiler:
            profiler = cProfile.Profile()
            profiler.enable()

        main()
        
        if do_print_profiler:
            profiler.disable()
            stats = pstats.Stats(profiler).sort_stats('cumulative')
            stats.print_stats(30)
    
else:
    if not st.session_state.private_file:
        create_private_file()
    # elif st.session_state.proceed_to_build_llm_prompt:
    #     build_LLM_prompt_config()
    elif st.session_state.proceed_to_private and not st.session_state['is_hf']:
        create_private_file()
    elif st.session_state.proceed_to_main:
        if do_print_profiler:
            profiler = cProfile.Profile()
            profiler.enable()

        main()

        if do_print_profiler:
            profiler.disable()
            stats = pstats.Stats(profiler).sort_stats('cumulative')
            stats.print_stats(30)