Spaces:
Running
Running
File size: 38,157 Bytes
87c3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
import os, time, requests, yaml, re, csv, sys, inspect
from dataclasses import dataclass, field
# from difflib import diff_bytes
import pandas as pd
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
from torch import ge
from re import S
from threading import Lock
from random import shuffle
from collections import defaultdict
currentdir = os.path.dirname(os.path.dirname(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
sys.path.append(currentdir)
from concurrent.futures import ThreadPoolExecutor as th
from vouchervision.general_utils import bcolors, validate_dir
'''
For download parallelization, I followed this guide https://rednafi.github.io/digressions/python/2020/04/21/python-concurrent-futures.html
'''
'''
####################################################################################################
Read config files
####################################################################################################
'''
def get_cfg_from_full_path(path_cfg):
with open(path_cfg, "r") as ymlfile:
cfg = yaml.full_load(ymlfile)
return cfg
'''
Classes
'''
@dataclass
class ImageCandidate:
cfg: str = ''
herb_code: str = ''
specimen_id: str = ''
family: str = ''
genus: str = ''
species: str = ''
fullname: str = ''
filename_image: str = ''
filename_image_jpg: str = ''
url: str = ''
headers_occ: str = ''
headers_img: str = ''
occ_row: list = field(init=False,default_factory=None)
image_row: list = field(init=False,default_factory=None)
def __init__(self, cfg, image_row, occ_row, url, lock):
# self.headers_occ = list(occ_row.columns.values)
# self.headers_img = list(image_row.columns.values)
self.headers_occ = occ_row
self.headers_img = image_row
self.occ_row = occ_row # pd.DataFrame(data=occ_row,columns=self.headers_occ)
self.image_row = image_row # pd.DataFrame(data=image_row,columns=self.headers_img)
self.url = url
self.cfg = cfg
self.filename_image, self.filename_image_jpg, self.herb_code, self.specimen_id, self.family, self.genus, self.species, self.fullname = generate_image_filename(occ_row)
self.download_image(lock)
def download_image(self, lock) -> None:
dir_destination = self.cfg['dir_destination_images']
MP_low = self.cfg['MP_low']
MP_high = self.cfg['MP_high']
# Define URL get parameters
sep = '_'
session = requests.Session()
retry = Retry(connect=1) #2, backoff_factor=0.5)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
print(f"{bcolors.BOLD} {self.fullname}{bcolors.ENDC}")
print(f"{bcolors.BOLD} URL: {self.url}{bcolors.ENDC}")
try:
response = session.get(self.url, stream=True, timeout=1.0)
img = Image.open(response.raw)
self._save_matching_image(img, MP_low, MP_high, dir_destination, lock)
print(f"{bcolors.OKGREEN} SUCCESS{bcolors.ENDC}")
except Exception as e:
print(f"{bcolors.FAIL} SKIP No Connection or ERROR --> {e}{bcolors.ENDC}")
print(f"{bcolors.WARNING} Status Code --> {response.status_code}{bcolors.ENDC}")
print(f"{bcolors.WARNING} Reasone --> {response.reason}{bcolors.ENDC}")
def _save_matching_image(self, img, MP_low, MP_high, dir_destination, lock) -> None:
img_mp, img_w, img_h = check_image_size(img)
if img_mp < MP_low:
print(f"{bcolors.WARNING} SKIP < {MP_low}MP: {img_mp}{bcolors.ENDC}")
elif MP_low <= img_mp <= MP_high:
image_path = os.path.join(dir_destination,self.filename_image_jpg)
img.save(image_path)
#imgSaveName = pd.DataFrame({"image_path": [image_path]})
self._add_occ_and_img_data(lock)
print(f"{bcolors.OKGREEN} Regular MP: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKGREEN} Image Saved: {image_path}{bcolors.ENDC}")
elif img_mp > MP_high:
if self.cfg['do_resize']:
[img_w, img_h] = calc_resize(img_w, img_h)
newsize = (img_w, img_h)
img = img.resize(newsize)
image_path = os.path.join(dir_destination,self.filename_image_jpg)
img.save(image_path)
#imgSaveName = pd.DataFrame({"imgSaveName": [imgSaveName]})
self._add_occ_and_img_data(lock)
print(f"{bcolors.OKGREEN} {MP_high}MP+ Resize: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKGREEN} Image Saved: {image_path}{bcolors.ENDC}")
else:
print(f"{bcolors.OKCYAN} {MP_high}MP+ Resize: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKCYAN} SKIP: {image_path}{bcolors.ENDC}")
def _add_occ_and_img_data(self, lock) -> None:
self.image_row = self.image_row.to_frame().transpose().rename(columns={"identifier": "url"})
self.image_row = self.image_row.rename(columns={"gbifID": "gbifID_images"})
new_data = {'fullname': [self.fullname], 'filename_image': [self.filename_image], 'filename_image_jpg': [self.filename_image_jpg]}
new_data = pd.DataFrame(data=new_data)
all_data = [new_data.reset_index(), self.image_row.reset_index(), self.occ_row.reset_index()]
combined = pd.concat(all_data,ignore_index=False, axis=1)
w_1 = new_data.shape[1] + 1
w_2 = self.image_row.shape[1] + 1
w_3 = self.occ_row.shape[1]
combined.drop([combined.columns[0], combined.columns[w_1], combined.columns[w_1 + w_2]], axis=1, inplace=True)
headers = np.hstack((new_data.columns.values, self.image_row.columns.values, self.occ_row.columns.values))
combined.columns = headers
self._append_combined_occ_image(self.cfg, combined, lock)
def _append_combined_occ_image(self, cfg, combined, lock) -> None:
path_csv_combined = os.path.join(cfg['dir_destination_csv'], cfg['filename_combined'])
with lock:
try:
# Add row once the file exists
csv_combined = pd.read_csv(path_csv_combined,dtype=str)
combined.to_csv(path_csv_combined, mode='a', header=False, index=False)
print(f'{bcolors.OKGREEN} Added 1 row to combined CSV: {path_csv_combined}{bcolors.ENDC}')
except Exception as e:
print(f"{bcolors.WARNING} Initializing new combined .csv file: [occ,images]: {path_csv_combined}{bcolors.ENDC}")
combined.to_csv(path_csv_combined, mode='w', header=True, index=False)
@dataclass
class ImageCandidateMulti:
cfg: str = ''
herb_code: str = ''
specimen_id: str = ''
family: str = ''
genus: str = ''
species: str = ''
fullname: str = ''
filename_image: str = ''
filename_image_jpg: str = ''
url: str = ''
headers_occ: str = ''
headers_img: str = ''
occ_row: list = field(init=False,default_factory=None)
image_row: list = field(init=False,default_factory=None)
download_success: bool = False
def __init__(self, cfg, image_row, occ_row, url, dir_destination, lock):
# Convert the Series to a DataFrame with one row
try:
# Now, you can access columns and data as you would in a DataFrame
self.headers_occ = occ_row
self.headers_img = image_row
except Exception as e:
print(f"Exception occurred: {e}")
self.occ_row = occ_row # pd.DataFrame(data=occ_row,columns=self.headers_occ)
self.image_row = image_row # pd.DataFrame(data=image_row,columns=self.headers_img)
self.url = url
self.cfg = cfg
self.filename_image, self.filename_image_jpg, self.herb_code, self.specimen_id, self.family, self.genus, self.species, self.fullname = generate_image_filename(occ_row)
self.download_success = self.download_image(dir_destination, lock)
def download_image(self, dir_destination, lock) -> None:
# dir_destination = self.cfg['dir_destination_images']
MP_low = self.cfg['MP_low']
MP_high = self.cfg['MP_high']
# Define URL get parameters
sep = '_'
session = requests.Session()
retry = Retry(connect=1) #2, backoff_factor=0.5)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
print(f"{bcolors.BOLD} {self.fullname}{bcolors.ENDC}")
print(f"{bcolors.BOLD} URL: {self.url}{bcolors.ENDC}")
try:
response = session.get(self.url, stream=True, timeout=1.0)
img = Image.open(response.raw)
self._save_matching_image(img, MP_low, MP_high, dir_destination, lock)
print(f"{bcolors.OKGREEN} SUCCESS{bcolors.ENDC}")
return True
except Exception as e:
print(f"{bcolors.FAIL} SKIP No Connection or ERROR --> {e}{bcolors.ENDC}")
print(f"{bcolors.WARNING} Status Code --> {response.status_code}{bcolors.ENDC}")
print(f"{bcolors.WARNING} Reasone --> {response.reason}{bcolors.ENDC}")
return False
def _save_matching_image(self, img, MP_low, MP_high, dir_destination, lock) -> None:
img_mp, img_w, img_h = check_image_size(img)
if img_mp < MP_low:
print(f"{bcolors.WARNING} SKIP < {MP_low}MP: {img_mp}{bcolors.ENDC}")
elif MP_low <= img_mp <= MP_high:
image_path = os.path.join(dir_destination,self.filename_image_jpg)
img.save(image_path)
#imgSaveName = pd.DataFrame({"image_path": [image_path]})
self._add_occ_and_img_data(lock)
print(f"{bcolors.OKGREEN} Regular MP: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKGREEN} Image Saved: {image_path}{bcolors.ENDC}")
elif img_mp > MP_high:
if self.cfg['do_resize']:
[img_w, img_h] = calc_resize(img_w, img_h)
newsize = (img_w, img_h)
img = img.resize(newsize)
image_path = os.path.join(dir_destination,self.filename_image_jpg)
img.save(image_path)
#imgSaveName = pd.DataFrame({"imgSaveName": [imgSaveName]})
self._add_occ_and_img_data(lock)
print(f"{bcolors.OKGREEN} {MP_high}MP+ Resize: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKGREEN} Image Saved: {image_path}{bcolors.ENDC}")
else:
print(f"{bcolors.OKCYAN} {MP_high}MP+ Resize: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKCYAN} SKIP: {image_path}{bcolors.ENDC}")
def _add_occ_and_img_data(self, lock) -> None:
self.image_row = self.image_row.to_frame().transpose().rename(columns={"identifier": "url"})
self.image_row = self.image_row.rename(columns={"gbifID": "gbifID_images"})
new_data = {'fullname': [self.fullname], 'filename_image': [self.filename_image], 'filename_image_jpg': [self.filename_image_jpg]}
new_data = pd.DataFrame(data=new_data)
all_data = [new_data.reset_index(), self.image_row.reset_index(), self.occ_row.reset_index()]
combined = pd.concat(all_data,ignore_index=False, axis=1)
w_1 = new_data.shape[1] + 1
w_2 = self.image_row.shape[1] + 1
w_3 = self.occ_row.shape[1]
combined.drop([combined.columns[0], combined.columns[w_1], combined.columns[w_1 + w_2]], axis=1, inplace=True)
headers = np.hstack((new_data.columns.values, self.image_row.columns.values, self.occ_row.columns.values))
combined.columns = headers
self._append_combined_occ_image(self.cfg, combined, lock)
def _append_combined_occ_image(self, cfg, combined, lock) -> None:
path_csv_combined = os.path.join(cfg['dir_destination_csv'], cfg['filename_combined'])
with lock:
try:
# Add row once the file exists
csv_combined = pd.read_csv(path_csv_combined,dtype=str)
combined.to_csv(path_csv_combined, mode='a', header=False, index=False)
print(f'{bcolors.OKGREEN} Added 1 row to combined CSV: {path_csv_combined}{bcolors.ENDC}')
except Exception as e:
print(f"{bcolors.WARNING} Initializing new combined .csv file: [occ,images]: {path_csv_combined}{bcolors.ENDC}")
combined.to_csv(path_csv_combined, mode='w', header=True, index=False)
class SharedCounter:
def __init__(self):
self.img_count_dict = {}
self.lock = Lock()
def increment(self, key, value=1):
with self.lock:
self.img_count_dict[key] = self.img_count_dict.get(key, 0) + value
def get_count(self, key):
with self.lock:
return self.img_count_dict.get(key, 0)
@dataclass
class ImageCandidateCustom:
cfg: str = ''
# herb_code: str = ''
# specimen_id: str = ''
# family: str = ''
# genus: str = ''
# species: str = ''
fullname: str = ''
filename_image: str = ''
filename_image_jpg: str = ''
url: str = ''
# headers_occ: str = ''
headers_img: str = ''
# occ_row: list = field(init=False,default_factory=None)
image_row: list = field(init=False,default_factory=None)
def __init__(self, cfg, image_row, url, col_name, lock):
# self.headers_occ = list(occ_row.columns.values)
# self.headers_img = list(image_row.columns.values)
self.image_row = image_row # pd.DataFrame(data=image_row,columns=self.headers_img)
self.url = url
self.cfg = cfg
self.col_name = col_name
self.fullname = image_row[col_name]
self.filename_image = image_row[col_name]
self.filename_image_jpg = ''.join([image_row[col_name], '.jpg'])
self.download_image(lock)
def download_image(self, lock) -> None:
dir_destination = self.cfg['dir_destination_images']
MP_low = self.cfg['MP_low']
MP_high = self.cfg['MP_high']
# Define URL get parameters
sep = '_'
session = requests.Session()
retry = Retry(connect=1) #2, backoff_factor=0.5)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
print(f"{bcolors.BOLD} {self.fullname}{bcolors.ENDC}")
print(f"{bcolors.BOLD} URL: {self.url}{bcolors.ENDC}")
try:
response = session.get(self.url, stream=True, timeout=1.0)
img = Image.open(response.raw)
self._save_matching_image(img, MP_low, MP_high, dir_destination, lock)
print(f"{bcolors.OKGREEN} SUCCESS{bcolors.ENDC}")
except Exception as e:
print(f"{bcolors.FAIL} SKIP No Connection or ERROR --> {e}{bcolors.ENDC}")
print(f"{bcolors.WARNING} Status Code --> {response.status_code}{bcolors.ENDC}")
print(f"{bcolors.WARNING} Reasone --> {response.reason}{bcolors.ENDC}")
def _save_matching_image(self, img, MP_low, MP_high, dir_destination, lock) -> None:
img_mp, img_w, img_h = check_image_size(img)
if img_mp < MP_low:
print(f"{bcolors.WARNING} SKIP < {MP_low}MP: {img_mp}{bcolors.ENDC}")
elif MP_low <= img_mp <= MP_high:
image_path = os.path.join(dir_destination,self.filename_image_jpg)
img.save(image_path)
print(f"{bcolors.OKGREEN} Regular MP: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKGREEN} Image Saved: {image_path}{bcolors.ENDC}")
elif img_mp > MP_high:
if self.cfg['do_resize']:
[img_w, img_h] = calc_resize(img_w, img_h)
newsize = (img_w, img_h)
img = img.resize(newsize)
image_path = os.path.join(dir_destination,self.filename_image_jpg)
img.save(image_path)
print(f"{bcolors.OKGREEN} {MP_high}MP+ Resize: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKGREEN} Image Saved: {image_path}{bcolors.ENDC}")
else:
print(f"{bcolors.OKCYAN} {MP_high}MP+ Resize: {img_mp}{bcolors.ENDC}")
print(f"{bcolors.OKCYAN} SKIP: {image_path}{bcolors.ENDC}")
'''
####################################################################################################
General Functions
####################################################################################################
'''
# If image is larger than MP max, downsample to have long side = 5000
def calc_resize(w,h):
if h > w:
ratio = h/w
new_h = 5000
new_w = round(5000/ratio)
elif w >= h:
ratio = w/h
new_w = 5000
new_h = round(5000/ratio)
return new_w, new_h
def check_image_size(img):
[img_w, img_h] = img.size
img_mp = round(img_w * img_h / 1000000,1)
return img_mp, img_w, img_h
def check_n_images_in_group(detailedOcc,N):
fam = detailedOcc['fullname'].unique()
for f in fam:
ct = len(detailedOcc[detailedOcc['fullname'].str.match(f)])
if ct == N:
print(f"{bcolors.OKGREEN}{f}: {ct}{bcolors.ENDC}")
else:
print(f"{bcolors.FAIL}{f}: {ct}{bcolors.ENDC}")
'''
####################################################################################################
Functions for --> download_GBIF_from_user_file.py
####################################################################################################
'''
# def download_subset_images_user_file(dir_home,dir_destination,n_already_downloaded,MP_low,MP_high,wishlist,filename_occ,filename_img):
# # (dirWishlists,dirNewImg,alreadyDownloaded,MP_Low,MP_High,wishlist,aggOcc_filename,aggImg_filename):
# sep = '_'
# aggOcc = pd.DataFrame()
# aggImg = pd.DataFrame()
# # Define URL get parameters
# session = requests.Session()
# retry = Retry(connect=1) #2, backoff_factor=0.5)
# adapter = HTTPAdapter(max_retries=retry)
# session.mount('http://', adapter)
# session.mount('https://', adapter)
# listMax = wishlist.shape[0]
# for index, spp in wishlist.iterrows():
# imageFound = False
# currentFamily = spp['family']
# # currentSpecies = spp['genus'] + ' ' + spp['species']
# currentFullname = spp['fullname']
# currentURL = spp['url']
# currentBarcode = spp['barcode']
# currentHerb = spp['herbCode']
# print(f"{bcolors.BOLD}Family: {currentFamily}{bcolors.ENDC}")
# print(f"{bcolors.BOLD} {currentFullname}{bcolors.ENDC}")
# print(f"{bcolors.BOLD} In Download List: {index} / {listMax}{bcolors.ENDC}")
# imgFilename = [currentHerb, currentBarcode, currentFullname]
# imgFilename = sep.join(imgFilename)
# imgFilenameJPG = imgFilename + ".jpg"
# print(f"{bcolors.BOLD} URL: {currentURL}{bcolors.ENDC}")
# try:
# img = Image.open(session.get(currentURL, stream=True, timeout=1.0).raw)
# imageFound, alreadyDownloaded, aggOcc, aggImg = save_matching_image_user_file(alreadyDownloaded,img,MP_Low,MP_High,dirNewImg,imgFilenameJPG)
# print(f"{bcolors.OKGREEN} SUCCESS{bcolors.ENDC}")
# except Exception as e:
# print(f"{bcolors.WARNING} SKIP No Connection or ERROR{bcolors.ENDC}")
# aggOcc.to_csv(os.path.join(dir_home,aggOcc_filename),index=False)
# aggImg.to_csv(os.path.join(dir_home,aggImg_filename),index=False)
# return alreadyDownloaded, aggOcc, aggImg
# Return entire row of file_to_search that matches the gbif_id, else return []
def find_gbifID(gbif_id,file_to_search):
row_found = file_to_search.loc[file_to_search['gbifID'].astype(str).str.match(str(gbif_id)),:]
if row_found.empty:
print(f"{bcolors.WARNING} gbif_id: {gbif_id} not found in occurrences file{bcolors.ENDC}")
row_found = None
else:
print(f"{bcolors.OKGREEN} gbif_id: {gbif_id} successfully found in occurrences file{bcolors.ENDC}")
return row_found
def validate_herb_code(occ_row):
# print(occ_row)
# Herbarium codes are not always in the correct column, we need to find the right one
try:
opts = [occ_row['institutionCode'],
occ_row['institutionID'],
occ_row['ownerInstitutionCode'],
occ_row['collectionCode'],
occ_row['publisher'],
occ_row['occurrenceID']]
opts = [item for item in opts if not(pd.isnull(item.values)) == True]
except:
opts = [str(occ_row['institutionCode']),
str(occ_row['institutionID']),
str(occ_row['ownerInstitutionCode']),
str(occ_row['collectionCode']),
str(occ_row['publisher']),
str(occ_row['occurrenceID'])]
opts = pd.DataFrame(opts)
opts = opts.dropna()
opts = opts.apply(lambda x: x[0]).tolist()
opts_short = []
for word in opts:
#print(word)
if len(word) <= 8:
if word is not None:
opts_short = opts_short + [word]
if len(opts_short) == 0:
try:
herb_code = occ_row['publisher'].values[0].replace(" ","-")
except:
try:
herb_code = occ_row['publisher'].replace(" ","-")
except:
herb_code = "ERROR"
try:
inst_ID = occ_row['institutionID'].values[0]
occ_ID = occ_row['occurrenceID'].values[0]
except:
inst_ID = occ_row['institutionID']
occ_ID = occ_row['occurrenceID']
if inst_ID == "UBC Herbarium":
herb_code = "UBC"
elif inst_ID == "Naturalis Biodiversity Center":
herb_code = "L"
elif inst_ID == "Forest Herbarium Ibadan (FHI)":
herb_code = "FHI"
elif 'id.luomus.fi' in occ_ID:
herb_code = "FinBIF"
else:
if len(opts_short) > 0:
herb_code = opts_short[0]
try:
herb_code = herb_code.values[0]
except:
herb_code = herb_code
# Specific cases that require manual overrides
# If you see an herbarium DWC file with a similar error, add them here
if herb_code == "Qarshi-Botanical-Garden,-Qarshi-Industries-Pvt.-Ltd,-Pakistan":
herb_code = "Qarshi-Botanical-Garden"
elif herb_code == "12650":
herb_code = "SDSU"
elif herb_code == "322":
herb_code = "SDSU"
elif herb_code == "GC-University,-Lahore":
herb_code = "GC-University-Lahore"
elif herb_code == "Institute-of-Biology-of-Komi-Scientific-Centre-of-the-Ural-Branch-of-the-Russian-Academy-of-Sciences":
herb_code = "Komi-Scientific-Centre"
return herb_code
def remove_illegal_chars(text):
cleaned = re.sub(r"[^a-zA-Z0-9_-]","",text)
return cleaned
def keep_first_word(text):
if (' ' in text) == True:
cleaned = text.split(' ')[0]
else:
cleaned = text
return cleaned
# Create a filename for the downloaded image
# In the case sensitive format:
# HERBARIUM_barcode_Family_Genus_species.jpg
def generate_image_filename(occ_row):
herb_code = remove_illegal_chars(validate_herb_code(occ_row))
try:
specimen_id = str(occ_row['gbifID'].values[0])
family = remove_illegal_chars(occ_row['family'].values[0])
genus = remove_illegal_chars(occ_row['genus'].values[0])
species = remove_illegal_chars(keep_first_word(occ_row['specificEpithet'].values[0]))
except:
specimen_id = str(occ_row['gbifID'])
family = remove_illegal_chars(occ_row['family'])
genus = remove_illegal_chars(occ_row['genus'])
species = remove_illegal_chars(keep_first_word(occ_row['specificEpithet']))
fullname = '_'.join([family, genus, species])
filename_image = '_'.join([herb_code, specimen_id, fullname])
filename_image_jpg = '.'.join([filename_image, 'jpg'])
return filename_image, filename_image_jpg, herb_code, specimen_id, family, genus, species, fullname
def read_DWC_file(cfg):
dir_home = cfg['dir_home']
filename_occ = cfg['filename_occ']
filename_img = cfg['filename_img']
# read the images.csv or occurences.csv file. can be txt ro csv
occ_df = ingest_DWC(filename_occ,dir_home)
images_df = ingest_DWC(filename_img,dir_home)
return occ_df, images_df
def read_DWC_file_multiDirs(cfg, dir_sub):
filename_occ = cfg['filename_occ']
filename_img = cfg['filename_img']
# read the images.csv or occurences.csv file. can be txt ro csv
occ_df = ingest_DWC(filename_occ,dir_sub)
images_df = ingest_DWC(filename_img,dir_sub)
return occ_df, images_df
def ingest_DWC(DWC_csv_or_txt_file,dir_home):
if DWC_csv_or_txt_file.split('.')[1] == 'txt':
df = pd.read_csv(os.path.join(dir_home,DWC_csv_or_txt_file), sep="\t",header=0, low_memory=False, dtype=str)
elif DWC_csv_or_txt_file.split('.')[1] == 'csv':
df = pd.read_csv(os.path.join(dir_home,DWC_csv_or_txt_file), sep=",",header=0, low_memory=False, dtype=str)
else:
print(f"{bcolors.FAIL}DWC file {DWC_csv_or_txt_file} is not '.txt' or '.csv' and was not opened{bcolors.ENDC}")
return df
'''
#######################################################################
Main function for the config_download_from_GBIF_all_images_in_file.yml
see yml for details
#######################################################################
'''
def download_all_images_in_images_csv_multiDirs(cfg):
dir_destination_parent = cfg['dir_destination_images']
dir_destination_csv = cfg['dir_destination_csv']
n_already_downloaded = cfg['n_already_downloaded']
n_max_to_download = cfg['n_max_to_download']
n_imgs_per_species = cfg['n_imgs_per_species']
MP_low = cfg['MP_low']
MP_high = cfg['MP_high']
do_shuffle_occurrences = cfg['do_shuffle_occurrences']
shared_counter = SharedCounter()
# (dirWishlists,dirNewImg,alreadyDownloaded,MP_Low,MP_High,aggOcc_filename,aggImg_filename):
# Get DWC files
for dir_DWC, dirs_sub, __ in os.walk(cfg['dir_home']):
for dir_sub in dirs_sub:
dir_home = os.path.join(dir_DWC, dir_sub)
dir_destination = os.path.join(dir_destination_parent, dir_sub)
validate_dir(dir_destination)
validate_dir(dir_destination_csv)
occ_df, images_df = read_DWC_file_multiDirs(cfg, dir_home)
# Shuffle the order of the occurrences DataFrame if the flag is set
if do_shuffle_occurrences:
occ_df = occ_df.sample(frac=1).reset_index(drop=True)
# Report summary
print(f"{bcolors.BOLD}Beginning of images file:{bcolors.ENDC}")
print(images_df.head())
print(f"{bcolors.BOLD}Beginning of occurrence file:{bcolors.ENDC}")
print(occ_df.head())
# Ignore problematic Herbaria
if cfg['ignore_banned_herb']:
for banned_url in cfg['banned_url_stems']:
images_df = images_df[~images_df['identifier'].str.contains(banned_url, na=False)]
# Report summary
n_imgs = images_df.shape[0]
n_occ = occ_df.shape[0]
print(f"{bcolors.BOLD}Number of images in images file: {n_imgs}{bcolors.ENDC}")
print(f"{bcolors.BOLD}Number of occurrence to search through: {n_occ}{bcolors.ENDC}")
results = process_image_batch_multiDirs(cfg, images_df, occ_df, dir_destination, shared_counter, n_imgs_per_species, do_shuffle_occurrences)
def download_all_images_in_images_csv(cfg):
dir_destination = cfg['dir_destination_images']
dir_destination_csv = cfg['dir_destination_csv']
# (dirWishlists,dirNewImg,alreadyDownloaded,MP_Low,MP_High,aggOcc_filename,aggImg_filename):
validate_dir(dir_destination)
validate_dir(dir_destination_csv)
if cfg['is_custom_file']:
download_from_custom_file(cfg)
else:
# Get DWC files
occ_df, images_df = read_DWC_file(cfg)
# Report summary
print(f"{bcolors.BOLD}Beginning of images file:{bcolors.ENDC}")
print(images_df.head())
print(f"{bcolors.BOLD}Beginning of occurrence file:{bcolors.ENDC}")
print(occ_df.head())
# Ignore problematic Herbaria
if cfg['ignore_banned_herb']:
for banned_url in cfg['banned_url_stems']:
images_df = images_df[~images_df['identifier'].str.contains(banned_url, na=False)]
# Report summary
n_imgs = images_df.shape[0]
n_occ = occ_df.shape[0]
print(f"{bcolors.BOLD}Number of images in images file: {n_imgs}{bcolors.ENDC}")
print(f"{bcolors.BOLD}Number of occurrence to search through: {n_occ}{bcolors.ENDC}")
results = process_image_batch(cfg, images_df, occ_df)
def process_image_batch(cfg, images_df, occ_df):
futures_list = []
results = []
# single threaded, useful for debugging
# for index, image_row in images_df.iterrows():
# futures = process_each_image_row( cfg, image_row, occ_df)
# futures_list.append(futures)
# for future in futures_list:
# try:
# result = future.result(timeout=60)
# results.append(result)
# except Exception:
# results.append(None)
lock = Lock()
with th(max_workers=13) as executor:
for index, image_row in images_df.iterrows():
futures = executor.submit(process_each_image_row, cfg, image_row, occ_df, lock)
futures_list.append(futures)
for future in futures_list:
try:
result = future.result(timeout=60)
results.append(result)
except Exception:
results.append(None)
return results
def process_image_batch_multiDirs(cfg, images_df, occ_df, dir_destination, shared_counter, n_imgs_per_species, do_shuffle_occurrences):
futures_list = []
results = []
lock = Lock()
if do_shuffle_occurrences:
images_df = images_df.sample(frac=1).reset_index(drop=True)
# Partition occ_df based on the first word of the 'specificEpithet' column
partition_dict = defaultdict(list)
for index, row in occ_df.iterrows():
first_word = row['specificEpithet'] # Assuming keep_first_word is defined
partition_dict[first_word].append(row)
# Convert lists to DataFrames
for key in partition_dict.keys():
partition_dict[key] = pd.DataFrame(partition_dict[key])
num_workers = 13
with th(max_workers=num_workers) as executor:
for specific_epithet, partition in partition_dict.items():
future = executor.submit(process_occ_chunk_multiDirs, cfg, images_df, partition, dir_destination, shared_counter, n_imgs_per_species, do_shuffle_occurrences, lock)
futures_list.append(future)
for future in futures_list:
try:
result = future.result(timeout=60)
results.append(result)
except Exception:
results.append(None)
return results
def process_occ_chunk_multiDirs(cfg, images_df, occ_chunk, dir_destination, shared_counter, n_imgs_per_species, do_shuffle_occurrences, lock):
results = []
for index, occ_row in occ_chunk.iterrows():
result = process_each_occ_row_multiDirs(cfg, images_df, occ_row, dir_destination, shared_counter, n_imgs_per_species, do_shuffle_occurrences, lock)
results.append(result)
return results
def process_each_occ_row_multiDirs(cfg, images_df, occ_row, dir_destination, shared_counter, n_imgs_per_species, do_shuffle_occurrences, lock):
print(f"{bcolors.BOLD}Working on occurrence: {occ_row['gbifID']}{bcolors.ENDC}")
gbif_id = occ_row['gbifID']
image_row = find_gbifID_in_images(gbif_id, images_df) # New function to find the image_row
if image_row is not None:
filename_image, filename_image_jpg, herb_code, specimen_id, family, genus, species, fullname = generate_image_filename(occ_row)
current_count = shared_counter.get_count(fullname)
# If the fullname is not in the counter yet, increment it
if current_count == 0:
shared_counter.increment(fullname)
print(shared_counter.get_count(fullname))
if shared_counter.get_count(fullname) > n_imgs_per_species:
print(f"Reached image limit for {fullname}. Skipping.")
return
else:
gbif_url = image_row['identifier']
image_candidate = ImageCandidateMulti(cfg, image_row, occ_row, gbif_url, dir_destination, lock)
if image_candidate.download_success:
shared_counter.increment(fullname)
else:
pass
def find_gbifID_in_images(gbif_id, images_df):
image_row = images_df[images_df['gbifID'] == gbif_id]
if image_row.empty:
return None
return image_row.iloc[0]
def process_each_image_row_multiDirs(cfg, image_row, occ_df, dir_destination, shared_counter, n_imgs_per_species, do_shuffle_occurrences, lock):
print(f"{bcolors.BOLD}Working on image: {image_row['gbifID']}{bcolors.ENDC}")
gbif_id = image_row['gbifID']
gbif_url = image_row['identifier']
occ_row = find_gbifID(gbif_id,occ_df)
if occ_row is not None:
filename_image, filename_image_jpg, herb_code, specimen_id, family, genus, species, fullname = generate_image_filename(occ_row)
current_count = shared_counter.get_count(fullname)
# If the fullname is not in the counter yet, increment it
if current_count == 0:
shared_counter.increment(fullname)
print(shared_counter.get_count(fullname))
if shared_counter.get_count(fullname) > n_imgs_per_species:
print(f"Reached image limit for {fullname}. Skipping.")
return
image_candidate = ImageCandidateMulti(cfg, image_row, occ_row, gbif_url, dir_destination, lock)
if image_candidate.download_success:
shared_counter.increment(fullname)
else:
pass
def process_each_image_row(cfg, image_row, occ_df, lock):
print(f"{bcolors.BOLD}Working on image: {image_row['gbifID']}{bcolors.ENDC}")
gbif_id = image_row['gbifID']
gbif_url = image_row['identifier']
occ_row = find_gbifID(gbif_id,occ_df)
if occ_row is not None:
ImageInfo = ImageCandidate(cfg, image_row, occ_row, gbif_url, lock)
# ImageInfo.download_image(cfg, occ_row, image_row)
else:
pass
def download_from_custom_file(cfg):
# Get DWC files
images_df = read_custom_file(cfg)
col_url = cfg['col_url']
col_name = cfg['col_name']
if col_url == None:
col_url = 'identifier'
else:
col_url = col_url
# Report summary
print(f"{bcolors.BOLD}Beginning of images file:{bcolors.ENDC}")
print(images_df.head())
# Ignore problematic Herbaria
if cfg['ignore_banned_herb']:
for banned_url in cfg['banned_url_stems']:
images_df = images_df[~images_df[col_url].str.contains(banned_url, na=False)]
# Report summary
n_imgs = images_df.shape[0]
print(f"{bcolors.BOLD}Number of images in images file: {n_imgs}{bcolors.ENDC}")
results = process_custom_image_batch(cfg, images_df)
def read_custom_file(cfg):
dir_home = cfg['dir_home']
filename_img = cfg['filename_img']
# read the images.csv or occurences.csv file. can be txt ro csv
images_df = ingest_DWC(filename_img,dir_home)
return images_df
# def ingest_DWC(DWC_csv_or_txt_file,dir_home):
# if DWC_csv_or_txt_file.split('.')[1] == 'txt':
# df = pd.read_csv(os.path.join(dir_home,DWC_csv_or_txt_file), sep="\t",header=0, low_memory=False, dtype=str)
# elif DWC_csv_or_txt_file.split('.')[1] == 'csv':
# df = pd.read_csv(os.path.join(dir_home,DWC_csv_or_txt_file), sep=",",header=0, low_memory=False, dtype=str)
# else:
# print(f"{bcolors.FAIL}DWC file {DWC_csv_or_txt_file} is not '.txt' or '.csv' and was not opened{bcolors.ENDC}")
# return df
def process_custom_image_batch(cfg, images_df):
futures_list = []
results = []
lock = Lock()
with th(max_workers=13) as executor:
for index, image_row in images_df.iterrows():
futures = executor.submit(process_each_custom_image_row, cfg, image_row, lock)
futures_list.append(futures)
for future in futures_list:
try:
result = future.result(timeout=60)
results.append(result)
except Exception:
results.append(None)
return results
def process_each_custom_image_row(cfg, image_row, lock):
col_url = cfg['col_url']
col_name = cfg['col_name']
if col_url == None:
col_url = 'identifier'
else:
col_url = col_url
gbif_url = image_row[col_url]
print(f"{bcolors.BOLD}Working on image: {image_row[col_name]}{bcolors.ENDC}")
if image_row is not None:
ImageInfo = ImageCandidateCustom(cfg, image_row, gbif_url, col_name, lock)
else:
pass |