File size: 10,251 Bytes
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import json, torch, transformers, gc
from transformers import BitsAndBytesConfig
from langchain.output_parsers import RetryWithErrorOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from huggingface_hub import hf_hub_download
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline

from utils_LLM import validate_and_align_JSON_keys_with_template, count_tokens, validate_taxonomy_WFO, validate_coordinates_here, remove_colons_and_double_apostrophes, SystemLoadMonitor

'''
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines
'''

from torch.utils.data import Dataset, DataLoader
# Dataset for handling prompts
class PromptDataset(Dataset):
    def __init__(self, prompts):
        self.prompts = prompts

    def __len__(self):
        return len(self.prompts)

    def __getitem__(self, idx):
        return self.prompts[idx]
    
class LocalMistralHandler: 
    RETRY_DELAY = 2  # Wait 2 seconds before retrying
    MAX_RETRIES = 5  # Maximum number of retries
    STARTING_TEMP = 0.1
    TOKENIZER_NAME = None
    VENDOR = 'mistral'
    MAX_GPU_MONITORING_INTERVAL = 2  # seconds

    def __init__(self, logger, model_name, JSON_dict_structure):
        self.logger = logger
        self.has_GPU = torch.cuda.is_available()
        self.monitor = SystemLoadMonitor(logger)

        self.model_name = model_name
        self.model_id = f"mistralai/{self.model_name}"
        name_parts = self.model_name.split('-')

        self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model",filename="config.json")


        self.JSON_dict_structure = JSON_dict_structure
        self.starting_temp = float(self.STARTING_TEMP)
        self.temp_increment = float(0.2)
        self.adjust_temp = self.starting_temp 

        system_prompt = "You are a helpful AI assistant who answers queries a JSON dictionary as specified by the user."
        template = """
            <s>[INST]{}[/INST]</s>

            [INST]{}[/INST]
            """.format(system_prompt, "{query}")

        # Create a prompt from the template so we can use it with Langchain
        self.prompt = PromptTemplate(template=template, input_variables=["query"])

        # Set up a parser
        self.parser = JsonOutputParser()

        self._set_config()


    def _clear_VRAM(self):
        # Clear CUDA cache if it's being used
        if self.has_GPU:
            self.local_model = None
            self.local_model_pipeline = None
            del self.local_model
            del self.local_model_pipeline
            gc.collect()  # Explicitly invoke garbage collector
            torch.cuda.empty_cache()
        else:
            self.local_model_pipeline = None
            self.local_model = None
            del self.local_model_pipeline
            del self.local_model
            gc.collect()  # Explicitly invoke garbage collector


    def _set_config(self):
        self._clear_VRAM()
        self.config = {'max_new_tokens': 1024,
                'temperature': self.starting_temp,
                'seed': 2023,
                'top_p': 1,
                'top_k': 40,
                'do_sample': True,
                'n_ctx':4096,

                # Activate 4-bit precision base model loading
                'use_4bit': True,
                # Compute dtype for 4-bit base models
                'bnb_4bit_compute_dtype': "float16",
                # Quantization type (fp4 or nf4)
                'bnb_4bit_quant_type': "nf4",
                # Activate nested quantization for 4-bit base models (double quantization)
                'use_nested_quant': False,
                }
        
        compute_dtype = getattr(torch,self.config.get('bnb_4bit_compute_dtype') )

        self.bnb_config = BitsAndBytesConfig(
            load_in_4bit=self.config.get('use_4bit'),
            bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'),
            bnb_4bit_compute_dtype=compute_dtype,
            bnb_4bit_use_double_quant=self.config.get('use_nested_quant'),
        )

        # Check GPU compatibility with bfloat16
        if compute_dtype == torch.float16 and self.config.get('use_4bit'):
            major, _ = torch.cuda.get_device_capability()
            if major >= 8:
                # print("=" * 80)
                # print("Your GPU supports bfloat16: accelerate training with bf16=True")
                # print("=" * 80)
                self.b_float_opt =  torch.bfloat16

            else:
                self.b_float_opt =  torch.float16
        self._build_model_chain_parser()
    

    def _adjust_config(self):
        self.logger.info(f'Incrementing temperature and reloading model')
        self._clear_VRAM()
        self.adjust_temp += self.temp_increment
        self.config['temperature'] = self.adjust_temp
        self._build_model_chain_parser()
    

    def _build_model_chain_parser(self):
        self.local_model_pipeline = transformers.pipeline("text-generation", 
                        model=self.model_id,
                        max_new_tokens=self.config.get('max_new_tokens'),
                        temperature=self.config.get('temperature'),
                        top_k=self.config.get('top_k'),
                        top_p=self.config.get('top_p'),
                        do_sample=self.config.get('do_sample'),
                        model_kwargs={"torch_dtype": self.b_float_opt, 
                                    "load_in_4bit": True, 
                                    "quantization_config": self.bnb_config})
        self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline)
        # Set up the retry parser with the runnable
        self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)
        # Create an llm chain with LLM and prompt
        self.chain = self.prompt | self.local_model  # LCEL

    '''
    def call_llm_local_MistralAI(self, prompt_template):
        self.monitor.start_monitoring_usage()
        
        nt_in = 0
        nt_out = 0

        ind = 0
        while (ind < self.MAX_RETRIES):
            ind += 1
            # Invoke the chain to generate prompt text
            results = self.chain.invoke({"query": prompt_template})

            # Use retry_parser to parse the response with retry logic
            output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template)

            if output is None:
                self.logger.error(f'Failed to extract JSON from:\n{results}')
                self._adjust_config()
                del results

            else:
                nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
                nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME)

                output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
                output, WFO_record = validate_taxonomy_WFO(output, replace_if_success_wfo=False) # Make configurable if needed
                output, GEO_record = validate_coordinates_here(output, replace_if_success_geo=False) # Make configurable if needed

                self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")

                self.monitor.stop_monitoring_report_usage()                

                if self.adjust_temp != self.starting_temp:
                    self._set_config()
                
                del results
                return output, nt_in, nt_out, WFO_record, GEO_record
        
        self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")

        self.monitor.stop_monitoring_report_usage()                

        self._set_config()
        return None, nt_in, nt_out, None, None
    '''
    def call_llm_local_MistralAI(self, prompts, batch_size=4):
        self.monitor.start_monitoring_usage()

        dataset = PromptDataset(prompts)
        data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False)

        all_results = []
        for batch_prompts in data_loader:
            batch_results = self._process_batch(batch_prompts)
            all_results.extend(batch_results)

        self.monitor.stop_monitoring_report_usage()

        if self.adjust_temp != self.starting_temp:
            self._set_config()

        return all_results

    def _process_batch(self, batch_prompts):
        batch_results = []
        for prompt in batch_prompts:
            output, nt_in, nt_out, WFO_record, GEO_record = self._process_single_prompt(prompt)
            if output is not None:
                batch_results.append({
                    "output": output,
                    "nt_in": nt_in,
                    "nt_out": nt_out,
                    "WFO_record": WFO_record,
                    "GEO_record": GEO_record
                })
        return batch_results

    def _process_single_prompt(self, prompt_template):
        nt_in = nt_out = 0
        ind = 0
        while ind < self.MAX_RETRIES:
            ind += 1
            results = self.chain.invoke({"query": prompt_template})
            output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template)

            if output is None:
                self.logger.error(f'Failed to extract JSON from:\n{results}')
                self._adjust_config()
                del results
            else:
                nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
                nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME)

                output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
                output, WFO_record = validate_taxonomy_WFO(output, replace_if_success_wfo=False)
                output, GEO_record = validate_coordinates_here(output, replace_if_success_geo=False)

                self.logger.info(f"Formatted JSON:\n{json.dumps(output, indent=4)}")
                del results
                return output, nt_in, nt_out, WFO_record, GEO_record

        self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
        return None, nt_in, nt_out, None, None