File size: 37,264 Bytes
524a99c
e91ac58
 
 
 
 
 
 
01e6026
87c3140
524a99c
 
87c3140
e91ac58
 
 
 
 
 
 
 
 
 
524a99c
 
 
 
 
 
 
e91ac58
 
524a99c
e91ac58
 
 
524a99c
a1e2ec1
524a99c
 
 
a1e2ec1
e91ac58
 
 
 
524a99c
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e2ec1
524a99c
67f7ed6
 
 
ae215ea
a1e2ec1
 
 
 
4d5e173
 
a1e2ec1
b8abf64
 
a1e2ec1
 
4d5e173
 
 
 
 
524a99c
 
ae215ea
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
ae215ea
 
524a99c
ae215ea
 
567930d
 
 
524a99c
ae215ea
 
 
 
 
 
 
524a99c
ae215ea
67f7ed6
 
 
dbaeac5
 
 
524a99c
 
 
ae215ea
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567930d
 
524a99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8abf64
e91ac58
 
 
 
 
 
524a99c
e91ac58
524a99c
e91ac58
ae215ea
524a99c
 
e91ac58
524a99c
e91ac58
ae215ea
524a99c
 
e91ac58
524a99c
 
 
 
e91ac58
 
 
 
 
 
524a99c
e91ac58
524a99c
e91ac58
524a99c
 
e91ac58
 
 
 
 
 
 
524a99c
 
e91ac58
524a99c
567930d
 
524a99c
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
e91ac58
 
ae215ea
524a99c
 
 
e91ac58
 
ae215ea
524a99c
 
 
 
 
 
 
 
 
 
 
ae215ea
524a99c
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae215ea
 
 
 
e91ac58
 
 
524a99c
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
e91ac58
 
 
 
 
524a99c
e91ac58
 
 
 
 
 
 
 
 
a1e2ec1
e91ac58
 
 
a1e2ec1
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
e91ac58
 
 
01e6026
e91ac58
 
 
 
 
a1e2ec1
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524a99c
e91ac58
 
 
524a99c
 
 
 
 
 
 
 
 
 
 
ae215ea
524a99c
 
567930d
 
524a99c
67f7ed6
524a99c
 
 
 
 
 
 
 
 
 
 
 
ae215ea
524a99c
 
 
ae215ea
 
 
 
 
524a99c
ae215ea
 
 
 
 
524a99c
 
 
 
 
 
ae215ea
 
 
 
 
 
 
c6a70af
 
 
 
524a99c
 
e91ac58
 
524a99c
e91ac58
 
 
 
524a99c
e91ac58
 
 
 
 
524a99c
 
 
 
 
 
e91ac58
 
524a99c
e91ac58
 
524a99c
e91ac58
 
 
 
 
 
524a99c
 
 
 
 
 
 
 
e91ac58
 
 
 
 
524a99c
 
ae215ea
524a99c
 
567930d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
import os, io, sys, inspect, statistics, json, cv2
from statistics import mean 
# from google.cloud import vision, storage
from google.cloud import vision
from google.cloud import vision_v1p3beta1 as vision_beta
from PIL import Image, ImageDraw, ImageFont
import colorsys
from tqdm import tqdm
from google.oauth2 import service_account

### LLaVA should only be installed if the user will actually use it.
### It requires the most recent pytorch/Python and can mess with older systems


'''
@misc{li2021trocr,
      title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, 
      author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
      year={2021},
      eprint={2109.10282},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@inproceedings{baek2019character,
  title={Character Region Awareness for Text Detection},
  author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9365--9374},
  year={2019}
}
'''

class OCREngine:

    BBOX_COLOR = "black"

    def __init__(self, logger, json_report, dir_home, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device):
        self.is_hf = is_hf
        self.logger = logger

        self.json_report = json_report

        self.path = path
        self.cfg = cfg
        self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR']
        self.OCR_option = self.cfg['leafmachine']['project']['OCR_option']
        self.double_OCR = self.cfg['leafmachine']['project']['double_OCR']
        self.dir_home = dir_home

        # Initialize TrOCR components
        self.trOCR_model_version = trOCR_model_version
        self.trOCR_processor = trOCR_processor
        self.trOCR_model = trOCR_model
        self.device = device

        self.hand_cleaned_text = None
        self.hand_organized_text = None
        self.hand_bounds = None
        self.hand_bounds_word = None
        self.hand_bounds_flat = None
        self.hand_text_to_box_mapping = None
        self.hand_height = None
        self.hand_confidences = None
        self.hand_characters = None

        self.normal_cleaned_text = None
        self.normal_organized_text = None
        self.normal_bounds = None
        self.normal_bounds_word = None
        self.normal_text_to_box_mapping = None
        self.normal_bounds_flat = None
        self.normal_height = None
        self.normal_confidences = None
        self.normal_characters = None

        self.trOCR_texts = None
        self.trOCR_text_to_box_mapping = None
        self.trOCR_bounds_flat = None
        self.trOCR_height = None
        self.trOCR_confidences = None
        self.trOCR_characters = None
        self.set_client()
        self.init_craft()

        self.multimodal_prompt = """I need you to transcribe all of the text in this image. 
        Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
        self.init_llava()

        
    def set_client(self):
        if self.is_hf:
            self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
            self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
        else:
            self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials()) 
            self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())


    def get_google_credentials(self):
        creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
        credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
        return credentials
    
    def init_craft(self):
        if 'CRAFT' in self.OCR_option:
            from craft_text_detector import load_craftnet_model, load_refinenet_model

            try:
                self.refine_net = load_refinenet_model(cuda=True)
                self.use_cuda = True
            except:
                self.refine_net = load_refinenet_model(cuda=False)
                self.use_cuda = False

            if self.use_cuda:
                self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=True)
            else:
                self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=False)

    def init_llava(self):
        if 'LLaVA' in self.OCR_option:
            from vouchervision.OCR_llava import OCRllava

            self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava']
            self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit']
            
            if self.json_report:
                self.json_report.set_text(text_main=f'Loading LLaVA model: {self.model_path} Quantization: {self.model_quant}')

            if self.model_quant == '4bit':
                use_4bit = True
            elif self.model_quant == 'full':
                use_4bit = False
            else:
                self.logger.info(f"Provided model quantization invlid. Using 4bit.")
                use_4bit = True

            self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False)

    def init_gemini_vision(self):
        pass

    def init_gpt4_vision(self):
        pass
            

    def detect_text_craft(self):
        from craft_text_detector import read_image, get_prediction

        # Perform prediction using CRAFT
        image = read_image(self.path)

        link_threshold = 0.85
        text_threshold = 0.4
        low_text = 0.4

        if self.use_cuda:
            self.prediction_result = get_prediction(
                image=image,
                craft_net=self.craft_net,
                refine_net=self.refine_net,
                text_threshold=text_threshold,
                link_threshold=link_threshold,
                low_text=low_text,
                cuda=True,
                long_size=1280
            )
        else:
            self.prediction_result = get_prediction(
                image=image,
                craft_net=self.craft_net,
                refine_net=self.refine_net,
                text_threshold=text_threshold,
                link_threshold=link_threshold,
                low_text=low_text,
                cuda=False,
                long_size=1280
            )

        # Initialize metadata structures
        bounds = []
        bounds_word = []  # CRAFT gives bounds for text regions, not individual words
        text_to_box_mapping = []
        bounds_flat = []
        height_flat = []
        confidences = []  # CRAFT does not provide confidences per character, so this might be uniformly set or estimated
        characters = []  # Simulating as CRAFT doesn't provide character-level details
        organized_text = ""
        
        total_b = len(self.prediction_result["boxes"])
        i=0
        # Process each detected text region
        for box in self.prediction_result["boxes"]:
            i+=1
            if self.json_report:
                self.json_report.set_text(text_main=f'Locating text using CRAFT --- {i}/{total_b}')

            vertices = [{"x": int(vertex[0]), "y": int(vertex[1])} for vertex in box]
            
            # Simulate a mapping for the whole detected region as a word
            text_to_box_mapping.append({
                "vertices": vertices,
                "text": "detected_text"  # Placeholder, as CRAFT does not provide the text content directly
            })

            # Assuming each box is a word for the sake of this example
            bounds_word.append({"vertices": vertices})

            # For simplicity, we're not dividing text regions into characters as CRAFT doesn't provide this
            # Instead, we create a single large 'character' per detected region
            bounds.append({"vertices": vertices})
            
            # Simulate flat bounds and height for each detected region
            x_positions = [vertex["x"] for vertex in vertices]
            y_positions = [vertex["y"] for vertex in vertices]
            min_x, max_x = min(x_positions), max(x_positions)
            min_y, max_y = min(y_positions), max(y_positions)
            avg_height = max_y - min_y
            height_flat.append(avg_height)
            
            # Assuming uniform confidence for all detected regions
            confidences.append(1.0)  # Placeholder confidence
            
            # Adding dummy character for each box
            characters.append("X")  # Placeholder character
            
            # Organize text as a single string (assuming each box is a word)
            # organized_text += "detected_text "  # Placeholder text    

        # Update class attributes with processed data
        self.normal_bounds = bounds
        self.normal_bounds_word = bounds_word
        self.normal_text_to_box_mapping = text_to_box_mapping
        self.normal_bounds_flat = bounds_flat  # This would be similar to bounds if not processing characters individually
        self.normal_height = height_flat
        self.normal_confidences = confidences
        self.normal_characters = characters
        self.normal_organized_text = organized_text.strip() 
    

    def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger):
        CONFIDENCES = 0.80
        MAX_NEW_TOKENS = 50

        self.OCR_JSON_to_file = {}
        
        ocr_parts = ''
        if not do_use_trOCR:
            if 'normal' in self.OCR_option:
                self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
                # logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}")
                # ocr_parts = ocr_parts + f"Google_OCR_Standard:\n{self.normal_organized_text}"
                ocr_parts = self.normal_organized_text
            
            if 'hand' in self.OCR_option:
                self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
                # logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}")
                # ocr_parts = ocr_parts +  f"Google_OCR_Handwriting:\n{self.hand_organized_text}"
                ocr_parts = self.hand_organized_text

            # if self.OCR_option in ['both',]:
            #     logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}")
            #     return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}"
            return ocr_parts
        else:
            logger.info(f'Supplementing with trOCR')

            self.trOCR_texts = []
            original_image = Image.open(self.path).convert("RGB")

            if 'normal' in self.OCR_option or 'CRAFT' in self.OCR_option:
                available_bounds = self.normal_bounds_word
            elif 'hand' in self.OCR_option:
                available_bounds = self.hand_bounds_word 
            # elif self.OCR_option in ['both',]:
            #     available_bounds = self.hand_bounds_word 
            else:
                raise

            text_to_box_mapping = []
            characters = []
            height = []
            confidences = []
            total_b = len(available_bounds)
            i=0
            for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"):
                i+=1
                if self.json_report:
                    self.json_report.set_text(text_main=f'Working on trOCR :construction: {i}/{total_b}')

                vertices = bound["vertices"]

                left = min([v["x"] for v in vertices])
                top = min([v["y"] for v in vertices])
                right = max([v["x"] for v in vertices])
                bottom = max([v["y"] for v in vertices])

                # Crop image based on Google's bounding box
                cropped_image = original_image.crop((left, top, right, bottom))
                pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values

                # Move pixel values to the appropriate device
                pixel_values = pixel_values.to(self.device)

                generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS)
                extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
                self.trOCR_texts.append(extracted_text)

                # For plotting 
                word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices)
                num_symbols = len(extracted_text)

                Yw = max(vertex.get('y') for vertex in vertices)
                Yo = Yw - min(vertex.get('y') for vertex in vertices)
                X = word_length / num_symbols if num_symbols > 0 else 0
                H = int(X+(Yo*0.1))
                height.append(H)

                map_dict = {
                    "vertices": vertices,
                    "text": extracted_text  # Use the text extracted by trOCR
                    }
                text_to_box_mapping.append(map_dict)

                characters.append(extracted_text)
                confidences.append(CONFIDENCES)
            
            median_height = statistics.median(height) if height else 0
            median_heights = [median_height * 1.5] * len(characters)

            self.trOCR_texts = ' '.join(self.trOCR_texts)

            self.trOCR_text_to_box_mapping = text_to_box_mapping
            self.trOCR_bounds_flat = available_bounds
            self.trOCR_height = median_heights
            self.trOCR_confidences = confidences
            self.trOCR_characters = characters

            if 'normal' in self.OCR_option:
                self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
                self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
                # logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
                # ocr_parts = ocr_parts +  f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
                ocr_parts = self.trOCR_texts
            if 'hand' in self.OCR_option:
                self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
                self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
                # logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
                # ocr_parts = ocr_parts +  f"\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
                ocr_parts = self.trOCR_texts
            # if self.OCR_option in ['both',]:
            #     self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
            #     self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
            #     self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
            #     logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
            #     ocr_parts = ocr_parts +  f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
            if 'CRAFT' in self.OCR_option:
                # self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
                self.OCR_JSON_to_file['OCR_CRAFT_trOCR'] = self.trOCR_texts
                # logger.info(f"CRAFT_trOCR:\n{self.trOCR_texts}")
                # ocr_parts = ocr_parts +  f"\nCRAFT_trOCR:\n{self.trOCR_texts}"
                ocr_parts = self.trOCR_texts
            return ocr_parts

    @staticmethod
    def confidence_to_color(confidence):
        hue = (confidence - 0.5) * 120 / 0.5
        r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1)
        return (int(r*255), int(g*255), int(b*255))


    def render_text_on_black_image(self, option):
        bounds_flat = getattr(self, f'{option}_bounds_flat', [])
        heights = getattr(self, f'{option}_height', [])
        confidences = getattr(self, f'{option}_confidences', [])
        characters = getattr(self, f'{option}_characters', [])

        original_image = Image.open(self.path)
        width, height = original_image.size
        black_image = Image.new("RGB", (width, height), "black")
        draw = ImageDraw.Draw(black_image)

        for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters):
            font_size = int(char_height)
            try:
                font = ImageFont.truetype("arial.ttf", font_size)
            except:
                font = ImageFont.load_default().font_variant(size=font_size)
            if option == 'trOCR':
                color = (0, 170, 255)
            else:
                color = OCREngine.confidence_to_color(confidence)
            position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height)
            draw.text(position, character, fill=color, font=font)

        return black_image


    def merge_images(self, image1, image2):
        width1, height1 = image1.size
        width2, height2 = image2.size
        merged_image = Image.new("RGB", (width1 + width2, max([height1, height2])))
        merged_image.paste(image1, (0, 0))
        merged_image.paste(image2, (width1, 0))
        return merged_image


    def draw_boxes(self, option):
        bounds = getattr(self, f'{option}_bounds', [])
        bounds_word = getattr(self, f'{option}_bounds_word', [])
        confidences = getattr(self, f'{option}_confidences', [])

        draw = ImageDraw.Draw(self.image)
        width, height = self.image.size
        if min([width, height]) > 4000:
            line_width_thick = int((width + height) / 2 * 0.0025)  # Adjust line width for character level
            line_width_thin = 1
        else:
            line_width_thick = int((width + height) / 2 * 0.005)  # Adjust line width for character level
            line_width_thin = 1 #int((width + height) / 2 * 0.001)

        for bound in bounds_word:
            draw.polygon(
                [
                    bound["vertices"][0]["x"], bound["vertices"][0]["y"],
                    bound["vertices"][1]["x"], bound["vertices"][1]["y"],
                    bound["vertices"][2]["x"], bound["vertices"][2]["y"],
                    bound["vertices"][3]["x"], bound["vertices"][3]["y"],
                ],
                outline=OCREngine.BBOX_COLOR,
                width=line_width_thin
            )

        # Draw a line segment at the bottom of each handwritten character
        for bound, confidence in zip(bounds, confidences):  
            color = OCREngine.confidence_to_color(confidence)
            # Use the bottom two vertices of the bounding box for the line
            bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick)
            bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick)
            draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick)

        return self.image


    def detect_text(self):
        
        with io.open(self.path, 'rb') as image_file:
            content = image_file.read()
        image = vision.Image(content=content)
        response = self.client.document_text_detection(image=image)
        texts = response.text_annotations

        if response.error.message:
            raise Exception(
                '{}\nFor more info on error messages, check: '
                'https://cloud.google.com/apis/design/errors'.format(
                    response.error.message))

        bounds = []
        bounds_word = []
        text_to_box_mapping = []
        bounds_flat = []
        height_flat = []
        confidences = []
        characters = []
        organized_text = ""
        paragraph_count = 0
        
        for text in texts[1:]:
            vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
            map_dict = {
                "vertices": vertices,
                "text": text.description
            }
            text_to_box_mapping.append(map_dict)

        for page in response.full_text_annotation.pages:
            for block in page.blocks:
                # paragraph_count += 1
                # organized_text += f'OCR_paragraph_{paragraph_count}:\n'  # Add paragraph label
                for paragraph in block.paragraphs:

                    avg_H_list = []
                    for word in paragraph.words:
                        Yw = max(vertex.y for vertex in word.bounding_box.vertices)
                        # Calculate the width of the word and divide by the number of symbols
                        word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
                        num_symbols = len(word.symbols)
                        if num_symbols <= 3:
                            H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
                        else:
                            Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
                            X = word_length / num_symbols if num_symbols > 0 else 0
                            H = int(X+(Yo*0.1))
                        avg_H_list.append(H)
                    avg_H = int(mean(avg_H_list))

                    words_in_para = []
                    for word in paragraph.words:
                        # Get word-level bounding box
                        bound_word_dict = {
                            "vertices": [
                                {"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
                            ]
                        }
                        bounds_word.append(bound_word_dict)
                        
                        Y = max(vertex.y for vertex in word.bounding_box.vertices)
                        word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
                        word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
                        num_symbols = len(word.symbols)
                        symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0

                        current_x_position = word_x_start

                        characters_ind = []
                        for symbol in word.symbols:
                            bound_dict = {
                                "vertices": [
                                    {"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
                                ]
                            }
                            bounds.append(bound_dict)

                            # Create flat bounds with adjusted x position
                            bounds_flat_dict = {
                                "vertices": [
                                    {"x": current_x_position, "y": Y}, 
                                    {"x": current_x_position + symbol_width, "y": Y}
                                ]
                            }
                            bounds_flat.append(bounds_flat_dict)
                            current_x_position += symbol_width

                            height_flat.append(avg_H)
                            confidences.append(round(symbol.confidence, 4))

                            characters_ind.append(symbol.text)
                            characters.append(symbol.text)

                        words_in_para.append(''.join(characters_ind))
                    paragraph_text = ' '.join(words_in_para)  # Join words in paragraph
                    organized_text += paragraph_text + ' ' #+ '\n' 

        # median_height = statistics.median(height_flat) if height_flat else 0
        # median_heights = [median_height] * len(characters)

        self.normal_cleaned_text = texts[0].description if texts else ''
        self.normal_organized_text = organized_text
        self.normal_bounds = bounds
        self.normal_bounds_word = bounds_word
        self.normal_text_to_box_mapping = text_to_box_mapping
        self.normal_bounds_flat = bounds_flat
        # self.normal_height = median_heights #height_flat
        self.normal_height = height_flat
        self.normal_confidences = confidences
        self.normal_characters = characters
        return self.normal_cleaned_text


    def detect_handwritten_ocr(self):
        
        with open(self.path, "rb") as image_file:
            content = image_file.read()

        image = vision_beta.Image(content=content)
        image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
        response = self.client_beta.document_text_detection(image=image, image_context=image_context)
        texts = response.text_annotations
        
        if response.error.message:
            raise Exception(
                "{}\nFor more info on error messages, check: "
                "https://cloud.google.com/apis/design/errors".format(response.error.message)
            )

        bounds = []
        bounds_word = []
        bounds_flat = []
        height_flat = []
        confidences = []
        characters = []
        organized_text = ""
        paragraph_count = 0
        text_to_box_mapping = []

        for text in texts[1:]:
            vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
            map_dict = {
                "vertices": vertices,
                "text": text.description
            }
            text_to_box_mapping.append(map_dict)

        for page in response.full_text_annotation.pages:
            for block in page.blocks:
                # paragraph_count += 1
                # organized_text += f'\nOCR_paragraph_{paragraph_count}:\n'  # Add paragraph label
                for paragraph in block.paragraphs:
                    
                    avg_H_list = []
                    for word in paragraph.words:
                        Yw = max(vertex.y for vertex in word.bounding_box.vertices)
                        # Calculate the width of the word and divide by the number of symbols
                        word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
                        num_symbols = len(word.symbols)
                        if num_symbols <= 3:
                            H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
                        else:
                            Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
                            X = word_length / num_symbols if num_symbols > 0 else 0
                            H = int(X+(Yo*0.1))
                        avg_H_list.append(H)
                    avg_H = int(mean(avg_H_list))

                    words_in_para = []
                    for word in paragraph.words:
                        # Get word-level bounding box
                        bound_word_dict = {
                            "vertices": [
                                {"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
                            ]
                        }
                        bounds_word.append(bound_word_dict)

                        Y = max(vertex.y for vertex in word.bounding_box.vertices)
                        word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
                        word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
                        num_symbols = len(word.symbols)
                        symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0

                        current_x_position = word_x_start

                        characters_ind = []
                        for symbol in word.symbols:
                            bound_dict = {
                                "vertices": [
                                    {"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
                                ]
                            }
                            bounds.append(bound_dict)

                            # Create flat bounds with adjusted x position
                            bounds_flat_dict = {
                                "vertices": [
                                    {"x": current_x_position, "y": Y}, 
                                    {"x": current_x_position + symbol_width, "y": Y}
                                ]
                            }
                            bounds_flat.append(bounds_flat_dict)
                            current_x_position += symbol_width

                            height_flat.append(avg_H)
                            confidences.append(round(symbol.confidence, 4))

                            characters_ind.append(symbol.text)
                            characters.append(symbol.text)

                        words_in_para.append(''.join(characters_ind))
                    paragraph_text = ' '.join(words_in_para)  # Join words in paragraph
                    organized_text += paragraph_text + ' ' #+ '\n' 

        # median_height = statistics.median(height_flat) if height_flat else 0
        # median_heights = [median_height] * len(characters)

        self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else ''
        self.hand_organized_text = organized_text
        self.hand_bounds = bounds
        self.hand_bounds_word = bounds_word
        self.hand_bounds_flat = bounds_flat
        self.hand_text_to_box_mapping = text_to_box_mapping
        # self.hand_height = median_heights #height_flat
        self.hand_height = height_flat
        self.hand_confidences = confidences
        self.hand_characters = characters
        return self.hand_cleaned_text


    def process_image(self, do_create_OCR_helper_image, logger):
        # Can stack options, so solitary if statements
        self.OCR = 'OCR:\n'
        if 'CRAFT' in self.OCR_option:
            self.do_use_trOCR = True
            self.detect_text_craft()
            ### Optionally add trOCR to the self.OCR for additional context
            if self.double_OCR:
                part_OCR = "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
                self.OCR = self.OCR + part_OCR + part_OCR
            else:
                self.OCR = self.OCR + "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
            # logger.info(f"CRAFT trOCR:\n{self.OCR}")

        if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image
            if self.json_report:
                self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:')

            image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.multimodal_prompt)
            self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}")

            try:
                self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
            except:
                self.OCR_JSON_to_file = {}
                self.OCR_JSON_to_file['OCR_LLaVA'] = str_output

            if self.double_OCR:
                self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}" + f"\nLLaVA OCR:\n{str_output}"
            else:
                self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}"
            # logger.info(f"LLaVA OCR:\n{self.OCR}")

        if 'normal' in self.OCR_option or 'hand' in self.OCR_option:
            if 'normal' in self.OCR_option:
                if self.double_OCR:
                    part_OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
                    self.OCR = self.OCR + part_OCR + part_OCR
                else:
                    self.OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
            if 'hand' in self.OCR_option:
                if self.double_OCR:
                    part_OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
                    self.OCR = self.OCR + part_OCR + part_OCR
                else:
                    self.OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
            # if self.OCR_option not in ['normal', 'hand', 'both']:
            #     self.OCR_option = 'both'
            #     self.detect_text()
            #     self.detect_handwritten_ocr()

            ### Optionally add trOCR to the self.OCR for additional context
            if self.do_use_trOCR:
                if self.double_OCR:
                    part_OCR = "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
                    self.OCR = self.OCR + part_OCR + part_OCR
                else:
                    self.OCR = self.OCR + "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
            # logger.info(f"OCR:\n{self.OCR}")
            else:
                # populate self.OCR_JSON_to_file = {}
                _ = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)


        if do_create_OCR_helper_image and ('LLaVA' not in self.OCR_option):
            self.image = Image.open(self.path)

            if 'normal' in self.OCR_option:
                image_with_boxes_normal = self.draw_boxes('normal')
                text_image_normal = self.render_text_on_black_image('normal')
                self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal)

            if 'hand' in self.OCR_option:
                image_with_boxes_hand = self.draw_boxes('hand')
                text_image_hand = self.render_text_on_black_image('hand')
                self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand)

            if self.do_use_trOCR:
                text_image_trOCR = self.render_text_on_black_image('trOCR') 

            if 'CRAFT' in self.OCR_option:
                image_with_boxes_normal = self.draw_boxes('normal')
                self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_trOCR)

            ### Merge final overlay image
            ### [original, normal bboxes, normal text]
            if 'CRAFT' in self.OCR_option or 'normal' in self.OCR_option:
                self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal)
            ### [original, hand bboxes, hand text]
            elif 'hand' in self.OCR_option:
                self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand)
            ### [original, normal bboxes, normal text, hand bboxes, hand text]
            else:
                self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand))
            
            if self.do_use_trOCR:
                if 'CRAFT' in self.OCR_option:
                    heat_map_text = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["text_score_heatmap"], cv2.COLOR_BGR2RGB))
                    heat_map_link = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["link_score_heatmap"], cv2.COLOR_BGR2RGB))
                    self.overlay_image = self.merge_images(self.overlay_image, heat_map_text)
                    self.overlay_image = self.merge_images(self.overlay_image, heat_map_link)

                else:
                    self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR)

        else:
            self.merged_image_normal = None
            self.merged_image_hand = None
            self.overlay_image = Image.open(self.path)
        
        try:
            from craft_text_detector import empty_cuda_cache
            empty_cuda_cache()
        except:
            pass

def check_for_inappropriate_content(file_stream):
    client = vision.ImageAnnotatorClient()

    content = file_stream.read()
    image = vision.Image(content=content)
    response = client.safe_search_detection(image=image)
    safe = response.safe_search_annotation

    # Check the levels of adult, violence, racy, etc. content.
    if (safe.adult > vision.Likelihood.POSSIBLE or
        safe.violence > vision.Likelihood.POSSIBLE or
        safe.racy > vision.Likelihood.POSSIBLE):
        return True  # The image violates safe search guidelines.
    
    return False  # The image is considered safe.