Spaces:
Running
Running
File size: 17,421 Bytes
aedd7d9 c5e57d6 e91ac58 9945fe7 4d5e173 b8abf64 c5e57d6 4d5e173 e91ac58 712822d 5590fea 712822d e91ac58 c5e57d6 e91ac58 6965e7c e91ac58 6965e7c e91ac58 c5e57d6 e91ac58 ae215ea e91ac58 4d5e173 af032b9 4d5e173 af032b9 e91ac58 6965e7c af032b9 c5e57d6 7a93196 b8abf64 7a93196 af032b9 c5e57d6 e91ac58 af032b9 e91ac58 af032b9 c5e57d6 af032b9 c5e57d6 e91ac58 af032b9 e91ac58 6965e7c 7a93196 64ffaff e91ac58 64ffaff a1e2ec1 e91ac58 a1e2ec1 e91ac58 a1e2ec1 64ffaff a1e2ec1 e91ac58 4d5e173 aedd7d9 4d5e173 3a1d033 4d5e173 aedd7d9 4d5e173 5590fea 4d5e173 5590fea 4d5e173 5590fea aedd7d9 e91ac58 b8abf64 4d5e173 7a93196 b8abf64 4d5e173 7a93196 4d5e173 c5e57d6 4d5e173 c5e57d6 4d5e173 af032b9 7a93196 4d5e173 7a93196 4d5e173 e91ac58 eb76783 e91ac58 7a93196 af032b9 4d5e173 7a93196 af032b9 c5e57d6 7a93196 af032b9 4d5e173 7a93196 b8abf64 7a93196 c5e57d6 7a93196 af032b9 e91ac58 a03d740 4d5e173 a03d740 4d5e173 a03d740 c5e57d6 a03d740 e91ac58 af032b9 e91ac58 c5e57d6 e91ac58 4d5e173 7a93196 e91ac58 b8abf64 e91ac58 a03d740 e91ac58 c3bedaf e91ac58 af032b9 e91ac58 af032b9 e91ac58 64ffaff e91ac58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import os, io, openai, vertexai, json, tempfile
import webbrowser
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from langchain.schema import HumanMessage
from langchain_openai import AzureChatOpenAI
from vertexai.language_models import TextGenerationModel
from vertexai.preview.generative_models import GenerativeModel
from google.cloud import vision
from google.cloud import vision_v1p3beta1 as vision_beta
# from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_vertexai import VertexAI
from huggingface_hub import HfApi, HfFolder
from datetime import datetime
# import google.generativeai as genai
from google.oauth2 import service_account
# from googleapiclient.discovery import build
class APIvalidation:
def __init__(self, cfg_private, dir_home, is_hf) -> None:
self.cfg_private = cfg_private
self.dir_home = dir_home
self.is_hf = is_hf
self.formatted_date = self.get_formatted_date()
self.HF_MODEL_LIST = ['microsoft/Florence-2-large','microsoft/Florence-2-base',
'microsoft/trocr-base-handwritten','microsoft/trocr-large-handwritten',
'google/gemma-2-9b','google/gemma-2-9b-it','google/gemma-2-27b','google/gemma-2-27b-it',
'mistralai/Mistral-7B-Instruct-v0.3','mistralai/Mixtral-8x22B-v0.1','mistralai/Mixtral-8x22B-Instruct-v0.1',
'unsloth/mistral-7b-instruct-v0.3-bnb-4bit'
]
def get_formatted_date(self):
# Get the current date
current_date = datetime.now()
# Format the date as "Month day, year" (e.g., "January 23, 2024")
formatted_date = current_date.strftime("%B %d, %Y")
return formatted_date
def has_API_key(self, val):
return isinstance(val, str) and bool(val.strip())
# if val:
# return True
# else:
# return False
def check_openai_api_key(self):
if self.is_hf:
openai.api_key = os.getenv('OPENAI_API_KEY')
else:
openai.api_key = self.cfg_private['openai']['OPENAI_API_KEY']
try:
openai.models.list()
return True
except:
return False
def check_azure_openai_api_key(self):
if not self.is_hf:
try:
# Initialize the Azure OpenAI client
model = AzureChatOpenAI(
deployment_name = 'gpt-4',#'gpt-35-turbo',
openai_api_version = self.cfg_private['openai_azure']['OPENAI_API_VERSION'],
openai_api_key = self.cfg_private['openai_azure']['OPENAI_API_KEY_AZURE'],
azure_endpoint = self.cfg_private['openai_azure']['OPENAI_API_BASE'],
openai_organization = self.cfg_private['openai_azure']['OPENAI_ORGANIZATION'],
)
msg = HumanMessage(content="hello")
# self.llm_object.temperature = self.config.get('temperature')
response = model.invoke([msg])
# Check the response content (you might need to adjust this depending on how your AzureChatOpenAI class handles responses)
if response:
return True
else:
return False
except Exception as e: # Use a more specific exception if possible
return False
else:
try:
azure_api_version = os.getenv('AZURE_API_VERSION')
azure_api_key = os.getenv('AZURE_API_KEY')
azure_api_base = os.getenv('AZURE_API_BASE')
azure_organization = os.getenv('AZURE_ORGANIZATION')
# Initialize the Azure OpenAI client
model = AzureChatOpenAI(
deployment_name = 'gpt-4',#'gpt-35-turbo',
openai_api_version = azure_api_version,
openai_api_key = azure_api_key,
azure_endpoint = azure_api_base,
openai_organization = azure_organization,
)
msg = HumanMessage(content="hello")
# self.llm_object.temperature = self.config.get('temperature')
response = model.invoke([msg])
# Check the response content (you might need to adjust this depending on how your AzureChatOpenAI class handles responses)
if response:
return True
else:
return False
except Exception as e: # Use a more specific exception if possible
return False
def check_mistral_api_key(self):
try:
if not self.is_hf:
client = MistralClient(api_key=self.cfg_private['mistral']['MISTRAL_API_KEY'])
else:
client = MistralClient(api_key=os.getenv('MISTRAL_API_KEY'))
# Initialize the Mistral Client with the API key
# Create a simple message
messages = [ChatMessage(role="user", content="hello")]
# Send the message and get the response
chat_response = client.chat(
model="mistral-tiny",
messages=messages,
)
# Check if the response is valid (adjust this according to the actual response structure)
if chat_response and chat_response.choices:
return True
else:
return False
except Exception as e: # Replace with a more specific exception if possible
return False
def check_google_vision_client(self):
results = {"ocr_print": False, "ocr_hand": False}
if self.is_hf:
client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
else:
client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
try:
with open(os.path.join(self.dir_home,'demo', 'ocr_test', 'ocr_test.jpg'), "rb") as image_file:
content = image_file.read()
except:
with open("./demo/ocr_test/ocr_test.jpg", "rb") as image_file:
content = image_file.read()
try:
image = vision_beta.Image(content=content)
image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
response = client_beta.document_text_detection(image=image, image_context=image_context)
texts = response.text_annotations
print(f"OCR Hand:\n{texts[0].description}")
if len(texts[0].description) > 0:
results['ocr_hand'] = True
except:
pass
try:
image = vision.Image(content=content)
response = client.document_text_detection(image=image)
texts = response.text_annotations
print(f"OCR Print:\n{texts[0].description}")
if len(texts[0].description) > 0:
results['ocr_print'] = True
except:
pass
return results
def check_google_vertex_genai_api_key(self):
results = {"palm2": False, "gemini": False, "palm2_langchain": False}
try:
model = TextGenerationModel.from_pretrained("text-bison@001")
response = model.predict("Hello")
test_response_palm = response.text
if test_response_palm:
results["palm2"] = True
print(f"palm2 pass [{test_response_palm}]")
else:
print(f"palm2 fail [{test_response_palm}]")
except Exception as e:
# print(f"palm2 fail2 [{e}]")
print(f"palm2 fail2")
try:
model = VertexAI(model="text-bison@001", max_output_tokens=10)
response = model.predict("Hello")
test_response_palm2 = response
if test_response_palm2:
results["palm2_langchain"] = True
print(f"palm2_langchain pass [{test_response_palm2}]")
else:
print(f"palm2_langchain fail [{test_response_palm2}]")
except Exception as e:
print(f"palm2 fail2 [{e}]")
print(f"palm2_langchain fail2")
try:
model = GenerativeModel("gemini-pro")
response = model.generate_content("Hello")
test_response_gemini = response.text
if test_response_gemini:
results["gemini"] = True
print(f"gemini pass [{test_response_gemini}]")
else:
print(f"gemini fail [{test_response_gemini}]")
except Exception as e:
# print(f"palm2 fail2 [{e}]")
print(f"palm2 fail2")
return results
def test_hf_token(self, k_huggingface):
if not k_huggingface:
print("Hugging Face API token not found in environment variables.")
return False
# Create an instance of the API
api = HfApi()
try:
# Try to get details of a known public model
model_info = api.model_info("bert-base-uncased", use_auth_token=k_huggingface)
if model_info:
print("Token is valid. Accessed model details successfully.")
return True
else:
print("Token is valid but failed to access model details.")
return True
except Exception as e:
print(f"Failed to validate token: {e}")
return False
def check_gated_model_access(self, model_id, k_huggingface):
api = HfApi()
attempts = 0
max_attempts = 2
while attempts < max_attempts:
try:
model_info = api.model_info(model_id, use_auth_token=k_huggingface)
print(f"Access to model '{model_id}' is granted.")
return "valid"
except Exception as e:
error_message = str(e)
if 'awaiting a review' in error_message:
print(f"Access to model '{model_id}' is awaiting review. (Under Review)")
return "under_review"
print(f"Access to model '{model_id}' is denied. Please accept the terms and conditions.")
print(f"Error: {e}")
webbrowser.open(f"https://huggingface.co/{model_id}")
input("Press Enter after you have accepted the terms and conditions...")
attempts += 1
print(f"Failed to access model '{model_id}' after {max_attempts} attempts.")
return "invalid"
def get_google_credentials(self):
if self.is_hf:
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
return credentials
else:
with open(self.cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS'], 'r') as file:
data = json.load(file)
creds_json_str = json.dumps(data)
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = creds_json_str
return credentials
def report_api_key_status(self):
missing_keys = []
present_keys = []
if self.is_hf:
k_OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
k_openai_azure = os.getenv('AZURE_API_VERSION')
k_google_application_credentials = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
k_project_id = os.getenv('GOOGLE_PROJECT_ID')
k_location = os.getenv('GOOGLE_LOCATION')
k_huggingface = None
k_mistral = os.getenv('MISTRAL_API_KEY')
k_here = os.getenv('HERE_API_KEY')
k_opencage = os.getenv('OPENCAGE_API_KEY')
else:
k_OPENAI_API_KEY = self.cfg_private['openai']['OPENAI_API_KEY']
k_openai_azure = self.cfg_private['openai_azure']['OPENAI_API_KEY_AZURE']
k_huggingface = self.cfg_private['huggingface']['hf_token']
k_project_id = self.cfg_private['google']['GOOGLE_PROJECT_ID']
k_location = self.cfg_private['google']['GOOGLE_LOCATION']
k_google_application_credentials = self.cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS']
k_mistral = self.cfg_private['mistral']['MISTRAL_API_KEY']
k_here = self.cfg_private['here']['API_KEY']
k_opencage = self.cfg_private['open_cage_geocode']['API_KEY']
# Check each key and add to the respective list
# Google OCR key check
if self.has_API_key(k_google_application_credentials) and self.has_API_key(k_project_id) and self.has_API_key(k_location):
google_ocr_results = self.check_google_vision_client()
if google_ocr_results['ocr_print']:
present_keys.append('Google OCR Print (Valid)')
else:
present_keys.append('Google OCR Print (Invalid)')
if google_ocr_results['ocr_hand']:
present_keys.append('Google OCR Handwriting (Valid)')
else:
present_keys.append('Google OCR Handwriting (Invalid)')
else:
missing_keys.append('Google OCR')
# present_keys.append('[MODEL] TEST (Under Review)')
# HF key check
if self.has_API_key(k_huggingface):
is_valid = self.test_hf_token(k_huggingface)
if is_valid:
present_keys.append('Hugging Face Local LLMs (Valid)')
else:
present_keys.append('Hugging Face Local LLMs (Invalid)')
else:
missing_keys.append('Hugging Face Local LLMs')
# List of gated models to check access for
for model_id in self.HF_MODEL_LIST:
access_status = self.check_gated_model_access(model_id, k_huggingface)
if access_status == "valid":
present_keys.append(f'[MODEL] {model_id} (Valid)')
elif access_status == "under_review":
present_keys.append(f'[MODEL] {model_id} (Under Review)')
else:
present_keys.append(f'[MODEL] {model_id} (Invalid)')
# OpenAI key check
if self.has_API_key(k_OPENAI_API_KEY):
is_valid = self.check_openai_api_key()
if is_valid:
present_keys.append('OpenAI (Valid)')
else:
present_keys.append('OpenAI (Invalid)')
else:
missing_keys.append('OpenAI')
# Azure OpenAI key check
# if self.has_API_key(k_openai_azure):
# is_valid = self.check_azure_openai_api_key()
# if is_valid:
# present_keys.append('Azure OpenAI (Valid)')
# else:
# present_keys.append('Azure OpenAI (Invalid)')
# else:
# missing_keys.append('Azure OpenAI')
# Google PALM2/Gemini key check
if self.has_API_key(k_google_application_credentials) and self.has_API_key(k_project_id) and self.has_API_key(k_location): ##################
vertexai.init(project=k_project_id, location=k_location, credentials=self.get_google_credentials())
google_results = self.check_google_vertex_genai_api_key()
if google_results['palm2']:
present_keys.append('Palm2 (Valid)')
else:
present_keys.append('Palm2 (Invalid)')
if google_results['palm2_langchain']:
present_keys.append('Palm2 LangChain (Valid)')
else:
present_keys.append('Palm2 LangChain (Invalid)')
if google_results['gemini']:
present_keys.append('Gemini (Valid)')
else:
present_keys.append('Gemini (Invalid)')
else:
missing_keys.append('Google VertexAI/GenAI')
# Mistral key check
if self.has_API_key(k_mistral):
is_valid = self.check_mistral_api_key()
if is_valid:
present_keys.append('Mistral (Valid)')
else:
present_keys.append('Mistral (Invalid)')
else:
missing_keys.append('Mistral')
if self.has_API_key(k_here):
present_keys.append('HERE Geocode (Valid)')
else:
missing_keys.append('HERE Geocode (Invalid)')
if self.has_API_key(k_opencage):
present_keys.append('OpenCage Geocode (Valid)')
else:
missing_keys.append('OpenCage Geocode (Invalid)')
# Create a report string
report = "API Key Status Report:\n"
report += "Present Keys: " + ", ".join(present_keys) + "\n"
report += "Missing Keys: " + ", ".join(missing_keys) + "\n"
print(report)
return present_keys, missing_keys, self.formatted_date |