File size: 21,018 Bytes
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import openai
import os, json, sys, inspect, time, requests
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
from langchain.schema import HumanMessage
from general_utils import num_tokens_from_string

currentdir = os.path.dirname(os.path.abspath(
    inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)

from prompts import PROMPT_UMICH_skeleton_all_asia, PROMPT_OCR_Organized, PROMPT_UMICH_skeleton_all_asia_GPT4, PROMPT_OCR_Organized_GPT4, PROMPT_JSON
from prompt_catalog import PromptCatalog

RETRY_DELAY = 61  # Wait 60 seconds before retrying
MAX_RETRIES = 5  # Maximum number of retries


def azure_call(model, messages):
    response = model(messages=messages)
    return response

def OCR_to_dict(is_azure, logger, MODEL, prompt, llm, prompt_version):
    for i in range(MAX_RETRIES):
        try:
            do_use_SOP = True

            if do_use_SOP:
                logger.info(f'Waiting for {MODEL} API call --- Using StructuredOutputParser')
                response = structured_output_parser(is_azure, MODEL, llm, prompt, logger, prompt_version)
                if response is None:
                    return None
                else:
                    return response['Dictionary']

            else:
                ### Direct GPT ###
                logger.info(f'Waiting for {MODEL} API call')
                if not is_azure:
                    response = openai.ChatCompletion.create(
                        model=MODEL,
                        temperature = 0,
                        messages=[
                            {"role": "system", "content": "You are a helpful assistant acting as a transcription expert and your job is to transcribe herbarium specimen labels based on OCR data and reformat it to meet Darwin Core Archive Standards into a Python dictionary based on certain rules."},
                            {"role": "user", "content": prompt},
                        ],
                        max_tokens=4096,
                    )
                    # print the model's response
                    return response.choices[0].message['content']
                else:
                    msg = HumanMessage(
                        content=prompt
                    )
                    response = azure_call(llm, [msg])
                    return response.content
        except Exception as e:
            logger.error(f'{e}')
            if i < MAX_RETRIES - 1:  # No delay needed after the last try
                time.sleep(RETRY_DELAY)
            else:
                raise

# def OCR_to_dict(logger, MODEL, prompt, OCR, BASE_URL, HEADERS):
#     for i in range(MAX_RETRIES):
#         try:
#             do_use_SOP = False

#             if do_use_SOP:
#                 logger.info(f'Waiting for {MODEL} API call --- Using StructuredOutputParser -- Content')
#                 response = structured_output_parser(MODEL, OCR, prompt, logger)
#                 if response is None:
#                     return None
#                 else:
#                     return response['Dictionary']

#             else:
#                 ### Direct GPT through Azure ###
#                 logger.info(f'Waiting for {MODEL} API call')
#                 response = azure_gpt_request(prompt, BASE_URL, HEADERS, model_name=MODEL)

#                 # Handle the response data. Note: You might need to adjust the following line based on the exact response format of the Azure API.
#                 content = response.get("choices", [{}])[0].get("message", {}).get("content", "")
#                 return content
#         except requests.exceptions.RequestException as e:  # Replace openai.error.APIError with requests exception.
#             # Handle HTTP exceptions. You can adjust this based on the Azure API's error responses.
#             if e.response.status_code == 502:
#                 logger.info(f'   ***    502 error was encountered, wait and try again   ***')
#                 if i < MAX_RETRIES - 1:
#                     time.sleep(RETRY_DELAY)
#             else:
#                 raise


def OCR_to_dict_16k(is_azure, logger, MODEL, prompt, llm, prompt_version):
    for i in range(MAX_RETRIES):
        try:
            fs = FunctionSchema()
            response = openai.ChatCompletion.create(
                model=MODEL,
                temperature = 0,
                messages=[
                    {"role": "system", "content": "You are a helpful assistant acting as a transcription expert and your job is to transcribe herbarium specimen labels based on OCR data and reformat it to meet Darwin Core Archive Standards into a Python dictionary based on certain rules."},
                    {"role": "user", "content": prompt},
                ],
                max_tokens=8000,
                function_call= "none",
                functions= fs.format_C21_AA_V1()

            )
            # Try to parse the response into JSON
            call_failed = False
            try:
                response_string = response.choices[0].message['content']
            except:
                call_failed = True
                response_string = prompt

            if not call_failed:
                try:
                    # Try to parse the response into JSON
                    response_dict = json.loads(response_string)
                    return response_dict['Dictionary']
                except json.JSONDecodeError:
                    # If the response is not a valid JSON, call the structured_output_parser_for_function_calls_fail function
                    logger.info(f'Invalid JSON response, calling structured_output_parser_for_function_calls_fail function')
                    logger.info(f'Waiting for {MODEL} API call --- Using StructuredOutputParser --- JSON Fixer')
                    response_sop = structured_output_parser_for_function_calls_fail(is_azure, MODEL, response_string, logger, llm, prompt_version, is_helper=False)
                    if response_sop is None:
                        return None
                    else:
                        return response_sop['Dictionary']
            else:
                try:
                    logger.info(f'Call Failed. Attempting fallback JSON parse without guidance')
                    logger.info(f'Waiting for {MODEL} API call --- Using StructuredOutputParser --- JSON Fixer')
                    response_sop = structured_output_parser_for_function_calls_fail(is_azure, MODEL, response_string, logger, llm, prompt_version, is_helper=False)
                    if response_sop is None:
                        return None
                    else:
                        return response_sop['Dictionary']
                except:
                    return None
        except Exception as e:
            # if e.status_code == 401: # or you can check the error message
            logger.info(f'   ***    401 error was encountered, wait and try again   ***')
            # If a 401 error was encountered, wait and try again
            if i < MAX_RETRIES - 1:  # No delay needed after the last try
                time.sleep(RETRY_DELAY)
            else:
                # If it was a different error, re-raise it
                raise
            
def structured_output_parser(is_azure, MODEL, llm, prompt_template, logger, prompt_version, is_helper=False):
    if not is_helper:
        response_schemas = [
            ResponseSchema(name="SpeciesName", description="Taxonomic determination, genus_species"),
            ResponseSchema(name="Dictionary", description='Formatted JSON object'),]#prompt_template),]
    elif is_helper:
        response_schemas = [
            ResponseSchema(name="Dictionary", description='Formatted JSON object'),#prompt_template),
            ResponseSchema(name="Summary", description="A one sentence summary of the content"),]
        
    output_parser = StructuredOutputParser.from_response_schemas(response_schemas)

    format_instructions = output_parser.get_format_instructions()

    prompt = ChatPromptTemplate(
        messages=[
            HumanMessagePromptTemplate.from_template("Parse the OCR text into the correct structured format.\n{format_instructions}\n{question}")  
        ],
        input_variables=["question"],
        partial_variables={"format_instructions": format_instructions}
    )

    # Handle Azure vs OpenAI implementation
    if is_azure:
        _input = prompt.format_prompt(question=prompt_template)
        msg = HumanMessage(content=_input.to_string())
        output = azure_call(llm, [msg])
    else:
        chat_model = ChatOpenAI(temperature=0, model=MODEL)
        _input = prompt.format_prompt(question=prompt_template)
        output = chat_model(_input.to_messages())

    # Log token length if running with Gradio
    try:
        nt = num_tokens_from_string(_input.to_string(), "cl100k_base")
        logger.info(f'Prompt token length --- {nt}')
    except:
        pass

    # Parse the output
    try:
        # Check if output is of type 'ai' and parse accordingly
        if output.type == 'ai':
            parsed_content = output.content
            logger.info(f'Formatted JSON\n{parsed_content}')
        else:
            # If not 'ai', log and set parsed_content to None or a default value
            logger.error('Output type is not "ai". Unable to parse.')
            return None

        # Clean up the parsed content
        parsed_content = parsed_content.replace('\n', "").replace('\t', "").replace('|', "")

        # Attempt to parse the cleaned content
        try:
            refined_response = output_parser.parse(parsed_content)
            return refined_response
        except Exception as parse_error:
            # Handle parsing errors specifically
            logger.error(f'Parsing Error: {parse_error}')
            return structured_output_parser_for_function_calls_fail(is_azure, MODEL, parsed_content, logger, llm, prompt_version, is_helper)

    except Exception as e:
        # Handle any other exceptions that might occur
        logger.error(f'Unexpected Error: {e}')
        return None

def structured_output_parser_for_function_calls_fail(is_azure, MODEL, failed_response, logger, llm, prompt_version, is_helper=False, try_ind=0):
    if try_ind > 5:
        return None

    # prompt_redo = PROMPT_JSON('helper' if is_helper else 'dict', failed_response)
    Prompt = PromptCatalog()
    if prompt_version in ['prompt_v1_verbose', 'prompt_v1_verbose_noDomainKnowledge']:
        prompt_redo = Prompt.prompt_gpt_redo_v1(failed_response)
    elif prompt_version in ['prompt_v2_json_rules']:
        prompt_redo = Prompt.prompt_gpt_redo_v2(failed_response)
    else:
        prompt_redo = Prompt.prompt_v2_custom_redo(failed_response, is_palm=False)

    response_schemas = [
        ResponseSchema(name="Summary", description="A one sentence summary of the content"),
        ResponseSchema(name="Dictionary", description='Formatted JSON object')
    ]

    output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
    format_instructions = output_parser.get_format_instructions()

    prompt = ChatPromptTemplate(
        messages=[
            HumanMessagePromptTemplate.from_template("The following text contains JSON formatted text, but there is an error that you need to correct.\n{format_instructions}\n{question}")
        ],
        input_variables=["question"],
        partial_variables={"format_instructions": format_instructions}
    )

    _input = prompt.format_prompt(question=prompt_redo)

    # Log token length if running with Gradio
    try:
        nt = num_tokens_from_string(_input.to_string(), "cl100k_base")
        logger.info(f'Prompt Redo token length --- {nt}')
    except:
        pass

    if is_azure:
        msg = HumanMessage(content=_input.to_string())
        output = azure_call(llm, [msg])
    else:
        chat_model = ChatOpenAI(temperature=0, model=MODEL)
        output = chat_model(_input.to_messages())

    try:
        refined_response = output_parser.parse(output.content)
    except json.decoder.JSONDecodeError as e:
        try_ind += 1
        error_message = str(e)
        redo_content = f'The error messsage is: {error_message}\nThe broken JSON object is: {output.content}'
        logger.info(f'[Failed JSON Object]\n{output.content}')
        refined_response = structured_output_parser_for_function_calls_fail(is_azure, MODEL, redo_content, logger, llm, prompt_version, is_helper, try_ind)
    except:
        try_ind += 1
        logger.info(f'[Failed JSON Object]\n{output.content}')
        refined_response = structured_output_parser_for_function_calls_fail(is_azure, MODEL, output.content, logger, llm, prompt_version, is_helper, try_ind)

    return refined_response




class FunctionSchema:
    def __init__(self):
        pass

    def format_C21_AA_V1(self):
        return [
            {
                "name": "format_C21_AA_V1",
                "description": "Format the given data into a specific dictionary",
                "parameters": {
                    "type": "object",
                    "properties": {},  # specify parameters here if your function requires any
                    "required": []  # list of required parameters
                },
                "output_type": "json",
                "output_schema": {
                    "type": "object",
                    "properties": {
                        "Dictionary": {
                            "type": "object",
                            "properties": {
                                "Catalog Number": {"type": "array", "items": {"type": "string"}},
                                "Genus": {"type": "array", "items": {"type": "string"}},
                                "Species": {"type": "array", "items": {"type": "string"}},
                                "subspecies": {"type": "array", "items": {"type": "string"}},
                                "variety": {"type": "array", "items": {"type": "string"}},
                                "forma": {"type": "array", "items": {"type": "string"}},
                                "Country": {"type": "array", "items": {"type": "string"}},
                                "State": {"type": "array", "items": {"type": "string"}},
                                "County": {"type": "array", "items": {"type": "string"}},
                                "Locality Name": {"type": "array", "items": {"type": "string"}},
                                "Min Elevation": {"type": "array", "items": {"type": "string"}},
                                "Max Elevation": {"type": "array", "items": {"type": "string"}},
                                "Elevation Units": {"type": "array", "items": {"type": "string"}},
                                "Verbatim Coordinates": {"type": "array", "items": {"type": "string"}},
                                "Datum": {"type": "array", "items": {"type": "string"}},
                                "Cultivated": {"type": "array", "items": {"type": "string"}},
                                "Habitat": {"type": "array", "items": {"type": "string"}},
                                "Collectors": {"type": "array", "items": {"type": "string"}},
                                "Collector Number": {"type": "array", "items": {"type": "string"}},
                                "Verbatim Date": {"type": "array", "items": {"type": "string"}},
                                "Date": {"type": "array", "items": {"type": "string"}},
                                "End Date": {"type": "array", "items": {"type": "string"}}
                            }
                        },
                        "SpeciesName": {
                            "type": "object",
                            "properties": {
                                "taxonomy": {"type": "array", "items": {"type": "string"}}
                            }
                        }
                    }
                }
            }
        ]

    def format_C21_AA_V1_helper(self):
        return [
            {
                "name": "format_C21_AA_V1_helper",
                "description": "Helper function for format_C21_AA_V1 to further format the given data",
                "parameters": {
                    "type": "object",
                    "properties": {},  # specify parameters here if your function requires any
                    "required": []  # list of required parameters
                },
                "output_type": "json",
                "output_schema": {
                    "type": "object",
                    "properties": {
                        "Dictionary": {
                            "type": "object",
                            "properties": {
                                "TAXONOMY": {
                                    "type": "object",
                                    "properties": {
                                        "Order": {"type": "array", "items": {"type": "string"}},
                                        "Family": {"type": "array", "items": {"type": "string"}},
                                        "Genus":{"type": "array", "items": {"type": "string"}},
                                        "Species": {"type": "array", "items": {"type": "string"}},
                                        "Subspecies": {"type": "array", "items": {"type": "string"}},
                                        "Variety": {"type": "array", "items": {"type": "string"}},
                                        "Forma": {"type": "array", "items": {"type": "string"}},
                                    }
                                },
                                "GEOGRAPHY": {
                                    "type": "object",
                                    "properties": {
                                        "Country": {"type": "array", "items": {"type": "string"}},
                                        "State": {"type": "array", "items": {"type": "string"}},
                                        "Prefecture": {"type": "array", "items": {"type": "string"}},
                                        "Province": {"type": "array", "items": {"type": "string"}},
                                        "District": {"type": "array", "items": {"type": "string"}},
                                        "County": {"type": "array", "items": {"type": "string"}},
                                        "City": {"type": "array", "items": {"type": "string"}},
                                        "Administrative Division": {"type": "array", "items": {"type": "string"}},
                                    }
                                },
                                "LOCALITY": {
                                    "type": "object",
                                    "properties": {
                                        "Landscape": {"type": "array", "items": {"type": "string"}},
                                        "Nearby Places": {"type": "array", "items": {"type": "string"}},
                                    }
                                },
                                "COLLECTING": {
                                    "type": "object",
                                    "properties": {
                                        "Collector": {"type": "array", "items": {"type": "string"}},
                                        "Collector's Number": {"type": "array", "items": {"type": "string"}},
                                        "Verbatim Date": {"type": "array", "items": {"type": "string"}},
                                        "Formatted Date": {"type": "array", "items": {"type": "string"}},
                                        "Cultivation Status": {"type": "array", "items": {"type": "string"}},
                                        "Habitat Description": {"type": "array", "items": {"type": "string"}},
                                    }
                                },
                                "MISCELLANEOUS": {
                                    "type": "object",
                                    "properties": {
                                        "Additional Information": {"type": "array", "items": {"type": "string"}},
                                    }
                                }
                            }
                        },
                        "Summary": {
                            "type": "object",
                            "properties": {
                                "Content Summary": {"type": "array", "items": {"type": "string"}}
                            }
                        }
                    }
                }
            }
        ]