File size: 14,328 Bytes
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import requests
from urllib.parse import urlencode
from Levenshtein import ratio
from fuzzywuzzy import fuzz

class WFONameMatcher:
    def __init__(self):
        self.base_url = "https://list.worldfloraonline.org/matching_rest.php?"
        self.N_BEST_CANDIDATES = 10
        self.NULL_DICT = {
                        "WFO_exact_match": False,
                        "WFO_exact_match_name": "",
                        "WFO_candidate_names": "",
                        "WFO_best_match": "",
                        "WFO_placement": "",
                        "WFO_override_OCR": False,
                    }
        self.SEP = '|'

    def extract_input_string(self, record):
        primary_input = f"{record.get('scientificName', '').strip()} {record.get('scientificNameAuthorship', '').strip()}".strip()
        secondary_input = ' '.join(filter(None, [record.get('genus', '').strip(), 
                                                 record.get('subgenus', '').strip(), 
                                                 record.get('specificEpithet', '').strip(), 
                                                 record.get('infraspecificEpithet', '').strip()])).strip()

        return primary_input, secondary_input

    def query_wfo_name_matching(self, input_string, check_homonyms=True, check_rank=True, accept_single_candidate=True):
        params = {
            "input_string": input_string,
            "check_homonyms": check_homonyms,
            "check_rank": check_rank,
            "method": "full",
            "accept_single_candidate": accept_single_candidate,
        }

        full_url = self.base_url + urlencode(params)

        response = requests.get(full_url)
        if response.status_code == 200:
            return response.json()
        else:
            return {"error": True, "message": "Failed to fetch data from WFO API"}
    
    def query_and_process(self, record):
        primary_input, secondary_input = self.extract_input_string(record)
        
        # Query with primary input
        primary_result = self.query_wfo_name_matching(primary_input)
        primary_processed, primary_ranked_candidates = self.process_wfo_response(primary_result, primary_input)

        if primary_processed.get('WFO_exact_match'):
            print("Selected Primary --- Exact Primary & Unchecked Secondary")
            return primary_processed
        else:
            # Query with secondary input
            secondary_result = self.query_wfo_name_matching(secondary_input)
            secondary_processed, secondary_ranked_candidates = self.process_wfo_response(secondary_result, secondary_input)

            if secondary_processed.get('WFO_exact_match'):
                print("Selected Secondary --- Unchecked Primary & Exact Secondary")
                return secondary_processed
            
            else:
                # Both failed, just return the first failure
                if (primary_processed.get("WFO_candidate_names") == '') and (secondary_processed.get("WFO_candidate_names") == ''):
                    print("Selected Primary --- Failed Primary & Failed Secondary")
                    return primary_processed
                
                # 1st failed, just return the second
                elif (primary_processed.get("WFO_candidate_names") == '') and (len(secondary_processed.get("WFO_candidate_names")) > 0):
                    print("Selected Secondary --- Failed Primary & Partial Secondary")
                    return secondary_processed
                
                # 2nd failed, just return the first
                elif (len(primary_processed.get("WFO_candidate_names")) > 0) and (secondary_processed.get("WFO_candidate_names") == ''):
                    print("Selected Primary --- Partial Primary & Failed Secondary")
                    return primary_processed

                # Both have partial matches, compare and rerank
                elif (len(primary_processed.get("WFO_candidate_names")) > 0) and (len(secondary_processed.get("WFO_candidate_names")) > 0):
                    # Combine and sort results, ensuring no duplicates
                    combined_candidates = list(set(primary_ranked_candidates + secondary_ranked_candidates))
                    combined_candidates.sort(key=lambda x: (x[1], x[0]), reverse=True)  # Sort by similarity score, then name
                    
                    # Replace candidates with combined_candidates and combined best match 
                    best_score_primary = primary_processed["WFO_candidate_names"][0][1]
                    best_score_secondary = secondary_processed["WFO_candidate_names"][0][1]

                    # Extracting only the candidate names from the top candidates
                    top_candidates = combined_candidates[:self.N_BEST_CANDIDATES]
                    cleaned_candidates = [cand[0] for cand in top_candidates]

                    if best_score_primary >= best_score_secondary:
                            
                        primary_processed["WFO_candidate_names"] = cleaned_candidates
                        primary_processed["WFO_best_match"] = cleaned_candidates[0]
                        
                        response_placement = self.query_wfo_name_matching(primary_processed["WFO_best_match"])
                        placement_exact_match = response_placement.get("match")
                        primary_processed["WFO_placement"] = placement_exact_match.get("placement", '')
                        
                        print("Selected Primary --- Partial Primary & Partial Secondary")
                        return primary_processed
                    else:
                        secondary_processed["WFO_candidate_names"] = cleaned_candidates
                        secondary_processed["WFO_best_match"] = cleaned_candidates[0]

                        response_placement = self.query_wfo_name_matching(secondary_processed["WFO_best_match"])
                        placement_exact_match = response_placement.get("match")
                        secondary_processed["WFO_placement"] = placement_exact_match.get("placement", '')

                        print("Selected Secondary --- Partial Primary & Partial Secondary")
                        return secondary_processed
                else:
                    return self.NULL_DICT

    def process_wfo_response(self, response, query):
        simplified_response = {}
        ranked_candidates = None

        exact_match = response.get("match")
        simplified_response["WFO_exact_match"] = bool(exact_match)

        candidates = response.get("candidates", [])
        candidate_names = [candidate["full_name_plain"] for candidate in candidates] if candidates else []

        if not exact_match and candidate_names:
            cleaned_candidates, ranked_candidates = self._rank_candidates_by_similarity(query, candidate_names)
            simplified_response["WFO_candidate_names"] = cleaned_candidates
            simplified_response["WFO_best_match"] = cleaned_candidates[0] if cleaned_candidates else ''
        elif exact_match:
            simplified_response["WFO_candidate_names"] = exact_match.get("full_name_plain")
            simplified_response["WFO_best_match"] = exact_match.get("full_name_plain")
        else:
            simplified_response["WFO_candidate_names"] = ''
            simplified_response["WFO_best_match"] = ''

        # Call WFO again to update placement using WFO_best_match
        try:
            response_placement = self.query_wfo_name_matching(simplified_response["WFO_best_match"])
            placement_exact_match = response_placement.get("match")
            simplified_response["WFO_placement"] = placement_exact_match.get("placement", '')
        except:
            simplified_response["WFO_placement"] = ''

        return simplified_response, ranked_candidates
    
    def _rank_candidates_by_similarity(self, query, candidates):
        string_similarities = []
        fuzzy_similarities = {candidate: fuzz.ratio(query, candidate) for candidate in candidates}
        query_words = query.split()

        for candidate in candidates:
            candidate_words = candidate.split()
            # Calculate word similarities and sum them up
            word_similarities = [ratio(query_word, candidate_word) for query_word, candidate_word in zip(query_words, candidate_words)]
            total_word_similarity = sum(word_similarities)

            # Calculate combined similarity score (average of word and fuzzy similarities)
            fuzzy_similarity = fuzzy_similarities[candidate]
            combined_similarity = (total_word_similarity + fuzzy_similarity) / 2
            string_similarities.append((candidate, combined_similarity))

        # Sort the candidates based on combined similarity, higher scores first
        ranked_candidates = sorted(string_similarities, key=lambda x: x[1], reverse=True)

        # Extracting only the candidate names from the top candidates
        top_candidates = ranked_candidates[:self.N_BEST_CANDIDATES]
        cleaned_candidates = [cand[0] for cand in top_candidates]
        
        return cleaned_candidates, ranked_candidates
    
    def check_WFO(self, record, replace_if_success_wfo):
        self.replace_if_success_wfo = replace_if_success_wfo

        # "WFO_exact_match","WFO_exact_match_name","WFO_best_match","WFO_candidate_names","WFO_placement"
        simplified_response = self.query_and_process(record)
        simplified_response['WFO_override_OCR'] = False

        # best_match
        if simplified_response.get('WFO_exact_match'):
            simplified_response['WFO_exact_match_name'] = simplified_response.get('WFO_best_match')
        else:
            simplified_response['WFO_exact_match_name'] = ''

        # placement
        wfo_placement = simplified_response.get('WFO_placement', '')
        if wfo_placement:
            parts = wfo_placement.split('/')[1:]
            simplified_response['WFO_placement'] = self.SEP.join(parts)
        else:
            simplified_response['WFO_placement'] = ''

        if simplified_response.get('WFO_exact_match') and replace_if_success_wfo:
            simplified_response['WFO_override_OCR'] = True
            name_parts = simplified_response.get('WFO_placement').split('$')[0]
            name_parts = name_parts.split(self.SEP)
            record['order'] = name_parts[3]
            record['family'] = name_parts[4]
            record['genus'] = name_parts[5]
            record['specificEpithet'] = name_parts[6]
            record['scientificName'] = simplified_response.get('WFO_exact_match_name')

        return record, simplified_response
    
def validate_taxonomy_WFO(record_dict, replace_if_success_wfo=False):
    Matcher = WFONameMatcher()
    try:    
        record_dict, WFO_dict = Matcher.check_WFO(record_dict, replace_if_success_wfo)
        return record_dict, WFO_dict
    except:
        return record_dict, Matcher.NULL_DICT

'''
if __name__ == "__main__":
    Matcher = WFONameMatcher()
    # input_string = "Rhopalocarpus alterfolius"
    record_exact_match ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "Hypericum prolificum",
        "scientificNameAuthorship": "",

        "genus": "Hypericum",
        "subgenus": "",
        "specificEpithet": "prolificum",
        "infraspecificEpithet": "",
    }
    record_partialPrimary_exactSecondary ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "Hyperic prolificum",
        "scientificNameAuthorship": "",

        "genus": "Hypericum",
        "subgenus": "",
        "specificEpithet": "prolificum",
        "infraspecificEpithet": "",
    }
    record_exactPrimary_partialSecondary ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "Hypericum prolificum",
        "scientificNameAuthorship": "",

        "genus": "Hyperic",
        "subgenus": "",
        "specificEpithet": "prolificum",
        "infraspecificEpithet": "",
    }
    record_partialPrimary_partialSecondary ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "Hyperic prolificum",
        "scientificNameAuthorship": "",

        "genus": "Hypericum",
        "subgenus": "",
        "specificEpithet": "prolific",
        "infraspecificEpithet": "",
    }
    record_partialPrimary_partialSecondary_swap ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "Hypericum prolific",
        "scientificNameAuthorship": "",

        "genus": "Hyperic",
        "subgenus": "",
        "specificEpithet": "prolificum",
        "infraspecificEpithet": "",
    }
    record_errorPrimary_partialSecondary ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "ricum proli",
        "scientificNameAuthorship": "",

        "genus": "Hyperic",
        "subgenus": "",
        "specificEpithet": "prolificum",
        "infraspecificEpithet": "",
    }
    record_partialPrimary_errorSecondary ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "Hyperic prolificum",
        "scientificNameAuthorship": "",

        "genus": "ricum",
        "subgenus": "",
        "specificEpithet": "proli",
        "infraspecificEpithet": "",
    }
    record_errorPrimary_errorSecondary ={
        "order": "Malpighiales",
        "family": "Hypericaceae",
        "scientificName": "ricum proli",
        "scientificNameAuthorship": "",

        "genus": "ricum",
        "subgenus": "",
        "specificEpithet": "proli",
        "infraspecificEpithet": "",
    }
    options = [record_exact_match,
               record_partialPrimary_exactSecondary,
               record_exactPrimary_partialSecondary,
               record_partialPrimary_partialSecondary,
               record_partialPrimary_partialSecondary_swap,
               record_errorPrimary_partialSecondary,
               record_partialPrimary_errorSecondary,
               record_errorPrimary_errorSecondary]
    for opt in options:
        simplified_response = Matcher.check_WFO(opt)
        print(json.dumps(simplified_response, indent=4))
'''