Spaces:
Running
Running
File size: 43,137 Bytes
87c3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
import os, math, cv2, random
import numpy as np
from itertools import combinations
from PIL import Image
from dataclasses import dataclass, field
from typing import List, Dict
from sklearn.linear_model import LinearRegression
from scipy.optimize import fsolve, minimize
@dataclass()
class ArmatureSkeleton:
cfg: str
Dirs: str
leaf_type: str
all_points: list
dir_temp: str
file_name: str
width: int
height: int
logger: object
is_complete: bool = False
keep_going: bool = False
do_show_QC_images: bool = False
do_save_QC_images: bool = False
classes: int = 0
points_list: int = 0
image: int = 0
ordered_middle: int = 0
midvein_fit: int = 0
midvein_fit_points: int = 0
ordered_midvein_length: float = 0.0
has_middle = False
has_outer = False
has_tip = False
is_split = False
ordered_petiole: int = 0
ordered_petiole_length: float = 0.0
has_ordered_petiole = False
has_apex: bool = False
apex_left: int = 0
apex_right: int = 0
apex_center: int = 0
apex_angle_type: str = 'NA'
apex_angle_degrees: float = 0.0
has_base: bool = False
base_left: int = 0
base_right: int = 0
base_center: int = 0
base_angle_type: str = 'NA'
base_angle_degrees: float = 0.0
has_lamina_base: bool = False
lamina_base: int = 0
has_lamina_length: bool = False
lamina_fit: int = 0
lamina_length: float = 0.0
has_width: bool = False
lamina_width: float = 0.0
width_left: float = 0.0
width_right: float = 0.0
def __init__(self, cfg, logger, Dirs, leaf_type, all_points, height, width, dir_temp, file_name) -> None:
# Store the necessary arguments as instance attributes
self.cfg = cfg
self.Dirs = Dirs
self.leaf_type = leaf_type
self.all_points = all_points
self.height = height
self.width = width
self.dir_temp = dir_temp
self.file_name = file_name
logger.name = f'[{leaf_type} - {file_name}]'
self.logger = logger
self.init_lists_dicts()
""" Setup """
self.set_cfg_values()
self.define_landmark_classes()
self.setup_QC_image()
self.setup_angle_image()
self.setup_final_image()
self.parse_all_points()
self.convert_YOLO_bbox_to_point()
if (len(self.points_list['outer']) > 6) and (len(self.points_list['middle']) > 3):
self.keep_going = True
""" Landmarks """
if self.keep_going:
# Start with ordering the midvein and petiole
self.order_middle()
# print(self.ordered_midvein)
if self.keep_going:
# Split the image using the midvein IF has_midvein == True
self.split_image_by_middle()
if self.keep_going:
self.group_outer_points()
if self.keep_going:
# Measure
self.measure_armature()
if self.keep_going:
# calc tangent angle of outer and inner polys
self.calc_angle_tangent()
if self.keep_going:
self.calc_angle_curl()
if self.keep_going:
# self.calc_angle_bend()
self.calc_curvature_radius()
if self.keep_going:
self.calc_direct_length()
# self.show_QC_image()
# self.show_angle_image()
self.is_complete = True # TODO add ways to set True
def measure_armature(self):
# wb = width_base = line between the last outer and inner points
# Define the line function
def line_func(x):
return self.wb_slope * x + self.wb_intercept
def middle_func(x):
return self.middle_poly[0]*x**2 + self.middle_poly[1]*x + self.middle_poly[2]
# Define the difference function
def line_middle_diff(x):
return line_func(x) - middle_func(x)
# Convert the points to numpy arrays
last_point_right = np.array(self.last_point_right)
last_point_left = np.array(self.last_point_left)
# Calculate the Euclidean distance between the points
self.width_base = np.linalg.norm(last_point_right - last_point_left)
print("The distance between the last points of the right and left segments is:", self.width_base)
# Intersection of the width and the middlepoly# Draw a line between the last points of the outer_left and outer_right segments
cv2.line(self.image, (int(self.last_point_left[0]), int(self.last_point_left[1])), (int(self.last_point_right[0]), int(self.last_point_right[1])), gc('white'), thickness=2)
cv2.line(self.image_angles, (int(self.last_point_left[0]), int(self.last_point_left[1])), (int(self.last_point_right[0]), int(self.last_point_right[1])), color=gc('white'), thickness=2)
# Calculate the slope and y-intercept of the line
self.wb_slope = (self.last_point_right[1] - self.last_point_left[1]) / (self.last_point_right[0] - self.last_point_left[0])
self.wb_intercept = self.last_point_left[1] - self.wb_slope * self.last_point_left[0]
# Find the intersection point
intersection_x = fsolve(line_middle_diff, 0)[0]
intersection_y = line_func(intersection_x)
self.width_base_inter = [(int(intersection_x), int(intersection_y))]
# Calculate the midpoint between the last points
self.width_base_mid = (last_point_right + last_point_left) / 2
cv2.circle(self.image, (int(intersection_x), int(intersection_y)), radius=2, color=gc('green'), thickness=-1)
cv2.circle(self.image, (int(intersection_x), int(intersection_y)), radius=4, color=gc('black'), thickness=2)
cv2.circle(self.image, (int(self.width_base_mid[0]), int(self.width_base_mid[1])), radius=2, color=gc('red'), thickness=-1)
cv2.circle(self.image, (int(self.width_base_mid[0]), int(self.width_base_mid[1])), radius=4, color=gc('black'), thickness=2)
print("The intersection point of the line and the middle polynomial is:", (intersection_x, intersection_y))
def calc_direct_length(self):
# Calculate the x-coordinate of the intersection point
x_intersection = (self.wb_intercept_perpendicular - self.wb_intercept) / (self.wb_slope - self.wb_slope_perpendicular)
# Calculate the y-coordinate of the intersection point
y_intersection = self.wb_slope * x_intersection + self.wb_intercept
# Store the intersection point as self.wb_origin
self.wb_origin = np.array([x_intersection, y_intersection])
# Calculate the distance between the intersection point and self.inter_point
self.length_direct = np.linalg.norm(self.wb_origin - self.inter_point)
# Plot a 2-pixel thick red line from self.wb_origin to self.inter_point
cv2.line(self.image_angles, tuple(map(int, self.wb_origin)), tuple(map(int, self.inter_point)), gc('red'), thickness=2)
def calc_curvature_radius(self):
def fit_circle_least_squares(points):
if len(points) <= 1:
return 0.0, (0, 0)
def calc_residuals(params, points):
x0, y0, r = params
residuals = np.sqrt((points[:, 0] - x0) ** 2 + (points[:, 1] - y0) ** 2) - r
return residuals
def objective(params, points):
return np.sum(calc_residuals(params, points) ** 2)
x_mean = np.mean(points[:, 0])
y_mean = np.mean(points[:, 1])
r_mean = np.mean(np.sqrt((points[:, 0] - x_mean) ** 2 + (points[:, 1] - y_mean) ** 2))
init_params = [x_mean, y_mean, r_mean]
result = minimize(objective, init_params, args=(points,), method='L-BFGS-B')
x0, y0, r = result.x
return r, (x0, y0)
self.radius_middle, center_middle = fit_circle_least_squares(self.ordered_middle_np)
self.radius_outer_left, center_outer_left = fit_circle_least_squares(self.ordered_outer_left_np)
self.radius_outer_right, center_outer_right = fit_circle_least_squares(self.ordered_outer_right_np)
# Plot the circles on self.image_angles
cv2.circle(self.image_angles, (int(center_middle[0]), int(center_middle[1])), int(self.radius_middle), gc('yellow'), thickness=1)
cv2.circle(self.image_angles, (int(center_outer_left[0]), int(center_outer_left[1])), int(self.radius_outer_left), gc('pink'), thickness=1)
cv2.circle(self.image_angles, (int(center_outer_right[0]), int(center_outer_right[1])), int(self.radius_outer_right), gc('cyan'), thickness=1)
print('hi')
def calc_angle_bend(self):
print('hi')
def calc_angle_curl(self):
# Define the perpendicular line function
def wb_line_perpendicular(x):
return self.wb_slope_perpendicular * x + self.wb_intercept_perpendicular
# Calculate the slope of the line perpendicular to the given line
self.wb_slope_perpendicular = -1 / self.wb_slope
# Calculate the y-intercept of the line perpendicular to the given line
self.wb_intercept_perpendicular = self.inter_point[1] - self.wb_slope_perpendicular * self.inter_point[0]
# Line fit to first 3 points in self.ordered_middle
self.middle_tip_poly = np.polyfit(self.ordered_middle_np[0:3, 0], self.ordered_middle_np[0:3, 1], 1)
middle_tip_slope = self.middle_tip_poly[0]
# angle between middle_tip fit the curl perpendicular
theta = math.atan(abs((middle_tip_slope - self.wb_slope_perpendicular) / (1 + self.wb_slope_perpendicular*middle_tip_slope)))
# Convert the angle to degrees
self.angle_curl = math.degrees(theta)
print("The angle between the lines is:", self.angle_curl, "degrees")
# Draw the tangents at the intersection point
intersection_point = np.array(self.inter_point_outer_inner, dtype=int)
length = 50 # Length of the tangent lines
# Calculate the points for the tangent lines
curl_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * self.wb_slope_perpendicular)
curl_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * self.wb_slope_perpendicular)
middle_tip_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * middle_tip_slope)
middle_tip_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * middle_tip_slope)
# Convert the points to integers
curl_tangent_point1 = tuple(map(int, curl_tangent_point1))
curl_tangent_point2 = tuple(map(int, curl_tangent_point2))
middle_tip_tangent_point1 = tuple(map(int, middle_tip_tangent_point1))
middle_tip_tangent_point2 = tuple(map(int, middle_tip_tangent_point2))
# Draw the tangent lines
cv2.line(self.image_angles, intersection_point, curl_tangent_point1, gc('teal'), 1)
cv2.line(self.image_angles, intersection_point, curl_tangent_point2, gc('teal'), 1)
cv2.line(self.image_angles, intersection_point, middle_tip_tangent_point1, gc('teal'), 1)
cv2.line(self.image_angles, intersection_point, middle_tip_tangent_point2, gc('teal'), 1)
# Draw the arc representing the angle
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 0, 0, self.angle_curl, gc('teal'), 2)
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 180, 0, self.angle_curl, gc('teal'), 2)
### plot the wb_line_perpendicular
# Calculate the y values for the start and end points of the line
y_start = max(0, int(wb_line_perpendicular(0)))
y_end = min(self.height, int(wb_line_perpendicular(self.width)))
# Define the range of y values for the line
y_range = np.linspace(y_start, y_end, num=100, dtype=int) # You can adjust 'num' to control the number of points
# Draw the dotted gray line
for i in range(len(y_range) - 1):
y1, x1 = y_range[i], int((y_range[i] - self.wb_intercept_perpendicular) / self.wb_slope_perpendicular)
x1 = max(0, min(x1, self.width)) # Keep x1 within the bounds of the image width
y2, x2 = y_range[i+1], int((y_range[i+1] - self.wb_intercept_perpendicular) / self.wb_slope_perpendicular)
x2 = max(0, min(x2, self.width)) # Keep x2 within the bounds of the image width
if i % 2 == 0: # Change the value of 2 to adjust the spacing between the dots
cv2.line(self.image_angles, (x1, y1), (x2, y2), gc('white'), 1)
def calc_angle_tangent(self):
# Define the polynomial functions
def left_func(x):
return self.left_poly[0]*x**2 + self.left_poly[1]*x + self.left_poly[2]
def right_func(x):
return self.right_poly[0]*x**2 + self.right_poly[1]*x + self.right_poly[2]
# Define the difference function
def left_right_diff(x):
return left_func(x) - right_func(x)
# Find the x-coordinate of the intersection point
intersection_x = fsolve(left_right_diff, 0)[0]
# Calculate the y-coordinate of the intersection point on the left and right curves
intersection_y_left = left_func(intersection_x)
intersection_y_right = right_func(intersection_x)
# Calculate the derivatives of the polynomials at the intersection point
left_derivative = 2*self.left_poly[0]*intersection_x + self.left_poly[1]
right_derivative = 2*self.right_poly[0]*intersection_x + self.right_poly[1]
# Calculate the angle between the tangents to the polynomials at the intersection point
theta = math.atan(abs((right_derivative - left_derivative) / (1 + left_derivative*right_derivative)))
# Convert the angle to degrees
self.angle_tangent = math.degrees(theta)
print("The angle between the left and right polynomials at their point of intersection is:", theta, "degrees")
# Draw the tangents at the intersection point
intersection_point = np.array([int(intersection_x), int(intersection_y_left + (intersection_y_right - intersection_y_left)/2)])
length = 30 # Length of the tangent lines
# Calculate the points for the tangent lines
left_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * left_derivative)
left_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * left_derivative)
right_tangent_point1 = (intersection_point[0] - length, intersection_point[1] - length * right_derivative)
right_tangent_point2 = (intersection_point[0] + length, intersection_point[1] + length * right_derivative)
# Convert the points to integers
left_tangent_point1 = tuple(map(int, left_tangent_point1))
left_tangent_point2 = tuple(map(int, left_tangent_point2))
right_tangent_point1 = tuple(map(int, right_tangent_point1))
right_tangent_point2 = tuple(map(int, right_tangent_point2))
# # Draw the tangent lines
# cv2.line(self.image_angles, intersection_point, left_tangent_point1, gc('yellow'), 1)
# cv2.line(self.image_angles, intersection_point, left_tangent_point2, gc('yellow'), 1)
# cv2.line(self.image_angles, intersection_point, right_tangent_point1, gc('yellow'), 1)
# cv2.line(self.image_angles, intersection_point, right_tangent_point2, gc('yellow'), 1)
# Draw the arc representing the angle
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 0, 0, self.angle_tangent, gc('yellow'), 2)
cv2.ellipse(self.image_angles, tuple(intersection_point), (length, length), 180, 0, self.angle_tangent, gc('yellow'), 2)
# self.show_angle_image()
# return theta
def group_outer_points(self):
# Split the points into two groups based on their position relative to the line
self.outer_left = []
self.outer_right = []
# if 'tip' in self.points_list:
for point in self.points_list['outer']:
x, y = point
predicted_y = self.predict_y(x)
if y > predicted_y:
self.outer_right.append(point)
else:
self.outer_left.append(point)
self.outer_right = np.array(self.outer_right)
self.outer_left = np.array(self.outer_left)
if (len(self.outer_right) < 3) or (len(self.outer_left) < 3):
self.keep_going = False
else:
# Plot `outer_left` points in pink
for point in self.outer_left:
x, y = point
cv2.circle(self.image, (x, y), radius=5, color=gc('pink'), thickness=-1)
# Plot `outer_right` points in cyan
for point in self.outer_right:
x, y = point
cv2.circle(self.image, (x, y), radius=5, color=gc('cyan'), thickness=-1)
### outer_left
self.outer_left = self.order_points(self.outer_left)
self.outer_left = self.remove_duplicate_points(self.outer_left)
# self.outer_left = self.check_momentum(self.outer_left, False)
self.order_points_plot(self.outer_left, 'outer_left', 'final')
self.order_points_plot(self.outer_left, 'outer_left', 'QC')
self.outer_left_length, self.outer_left = self.get_length_of_ordered_points(self.outer_left, 'outer_left')
self.has_outer_left = True
### outer_right
self.outer_right = self.order_points(self.outer_right)
self.outer_right = self.remove_duplicate_points(self.outer_right)
# self.outer_right = self.check_momentum(self.outer_right, False)
self.order_points_plot(self.outer_right, 'outer_right', 'final')
self.order_points_plot(self.outer_right, 'outer_right', 'QC')
self.outer_right_length, self.outer_right = self.get_length_of_ordered_points(self.outer_right, 'outer_right')
self.has_middle = True
print(f"Length outer_left - {self.outer_left_length}")
print(f"Length outer_right - {self.outer_right_length}")
self.outer_right_np = np.array(self.outer_right)
self.outer_left_np = np.array(self.outer_left)
self.ordered_middle_np = np.array(self.ordered_middle)
# Fit 2nd order polynomials to the line segments
self.left_poly = np.polyfit(self.outer_left_np[:, 0], self.outer_left_np[:, 1], 2)
self.right_poly = np.polyfit(self.outer_right_np[:, 0], self.outer_right_np[:, 1], 2)
self.middle_poly = np.polyfit(self.ordered_middle_np[:, 0], self.ordered_middle_np[:, 1], 2)
# Evaluate polynomial coefficients for a range of x values
x_range = np.linspace(0, self.width, num=100)
left_line = np.polyval(self.left_poly, x_range)
right_line = np.polyval(self.right_poly, x_range)
self.middle_line = np.polyval(self.middle_poly, x_range)
# Plot lines of fit as white lines
for i in range(len(x_range)-1):
cv2.line(self.image, (int(x_range[i]), int(left_line[i])), (int(x_range[i+1]), int(left_line[i+1])), color=gc('gray'), thickness=1)
cv2.line(self.image, (int(x_range[i]), int(right_line[i])), (int(x_range[i+1]), int(right_line[i+1])), color=gc('white'), thickness=1)
cv2.line(self.image, (int(x_range[i]), int(self.middle_line[i])), (int(x_range[i+1]), int(self.middle_line[i+1])), color=gc('white'), thickness=2)
# Define the polynomial functions
def left_func(x):
return self.left_poly[0]*x**2 + self.left_poly[1]*x + self.left_poly[2]
def right_func(x):
return self.right_poly[0]*x**2 + self.right_poly[1]*x + self.right_poly[2]
def middle_func(x):
return self.middle_poly[0]*x**2 + self.middle_poly[1]*x + self.middle_poly[2]
# Define the difference functions
def left_middle_diff(x):
return left_func(x) - middle_func(x)
def right_middle_diff(x):
return right_func(x) - middle_func(x)
def left_right_diff(x):
return left_func(x) - right_func(x)
# Find the intersection points
left_middle_intersection_x = fsolve(left_middle_diff, 0)
right_middle_intersection_x = fsolve(right_middle_diff, 0)
left_right_intersection_x = fsolve(left_right_diff, 0)
left_middle_intersection_y = left_func(left_middle_intersection_x)[0]
right_middle_intersection_y = right_func(right_middle_intersection_x)[0]
left_right_intersection_y = left_func(left_right_intersection_x)[0]
# Keep only points within the image boundaries
intersection_points = np.array([[left_middle_intersection_x, left_middle_intersection_y], [right_middle_intersection_x, right_middle_intersection_y], [left_right_intersection_x, left_right_intersection_y]])
intersection_points = intersection_points[(intersection_points[:, 0] >= 0) & (intersection_points[:, 0] <= self.width) & (intersection_points[:, 1] >= 0) & (intersection_points[:, 1] <= self.height)]
if intersection_points.size == 0:
self.keep_going = False
else:
# Compute the average of the intersection points
intersection_x = np.mean(intersection_points[:, 0])
intersection_y = np.mean(intersection_points[:, 1])
self.inter_point = [int(intersection_x), int(intersection_y)]
self.inter_point_outer_inner = [int(left_right_intersection_x), int(left_right_intersection_y)]
# Draw intersection point on the image
cv2.circle(self.image, (int(intersection_x), int(intersection_y)), radius=5, color=gc('green'), thickness=-1)
print(f"Length outer_left - {self.outer_left_length}")
print(f"Length outer_right - {self.outer_right_length}")
print(f"Intersection point - ({int(intersection_x)}, {int(intersection_y)})")
# Make the first points be at the tip, last points far away at base
def reorder_segment(segment, inter):
# Convert to numpy arrays for easier manipulation
segment = np.array(segment)
inter = np.array(inter)
# Calculate the Euclidean distance from the INTER point to the first and last points in the segment
dist_first = np.linalg.norm(segment[0] - inter)
dist_last = np.linalg.norm(segment[-1] - inter)
# If the last point is closer to the INTER point than the first point, reverse the order of the segment
if dist_last < dist_first:
segment = segment[::-1]
return segment.tolist()
self.ordered_middle = reorder_segment(self.ordered_middle, self.inter_point)
self.outer_left = reorder_segment(self.outer_left, self.inter_point)
self.outer_right = reorder_segment(self.outer_right, self.inter_point)
self.ordered_outer_right_np = np.array(self.outer_right)
self.ordered_outer_left_np = np.array(self.outer_left)
self.ordered_middle_np = np.array(self.ordered_middle)
# Draw a black ring around the last point of the outer_left segment
self.last_point_left = self.outer_left[-1]
cv2.circle(self.image, (int(self.last_point_left[0]), int(self.last_point_left[1])), radius=4, color=gc('black'), thickness=2)
cv2.circle(self.image, (int(self.last_point_left[0]), int(self.last_point_left[1])), radius=6, color=gc('white'), thickness=2)
# Draw a black ring around the last point of the outer_right segment
self.last_point_right = self.outer_right[-1]
cv2.circle(self.image, (int(self.last_point_right[0]), int(self.last_point_right[1])), radius=4, color=gc('black'), thickness=2)
cv2.circle(self.image, (int(self.last_point_right[0]), int(self.last_point_right[1])), radius=6, color=gc('white'), thickness=2)
# self.show_QC_image()
# print('hi')
def split_image_by_middle(self):
if not self.has_middle:
self.keep_going = False
else:
n_fit = 2
# Convert the points to a numpy array
points_arr = np.array(self.ordered_middle)
# Fit a line to the points
self.midvein_fit = np.polyfit(points_arr[:, 0], points_arr[:, 1], n_fit)
# Plot a sample of points from along the line
max_dim = max(self.height, self.width)
if max_dim < 400:
num_points = 40
elif max_dim < 1000:
num_points = 80
else:
num_points = 120
# Get the endpoints of the line segment that lies within the bounds of the image
x1 = 0
y1 = int(self.midvein_fit[0] * x1**2 + self.midvein_fit[1] * x1 + self.midvein_fit[2])
x2 = self.width - 1
y2 = int(self.midvein_fit[0] * x2**2 + self.midvein_fit[1] * x2 + self.midvein_fit[2])
denom = self.midvein_fit[0]
if denom == 0:
denom = 0.0000000001
if y1 < 0:
y1 = 0
x1 = int((y1 - self.midvein_fit[1]) / denom)
if y2 >= self.height:
y2 = self.height - 1
x2 = int((y2 - self.midvein_fit[1]) / denom)
# Sample num_points points along the line segment within the bounds of the image
x_vals = np.linspace(x1, x2, num_points)
y_vals = self.midvein_fit[0] * x_vals**2 + self.midvein_fit[1] * x_vals + self.midvein_fit[2]
# Remove any points that are outside the bounds of the image
indices = np.where((y_vals >= 0) & (y_vals < self.height))[0]
x_vals = x_vals[indices]
y_vals = y_vals[indices]
# Recompute y-values using the line equation and updated x-values
y_vals = self.midvein_fit[0] * x_vals + self.midvein_fit[1]
self.midvein_fit_points = np.column_stack((x_vals, y_vals))
self.is_split = True
# Draw line of fit
# for point in self.midvein_fit_points:
# cv2.circle(self.image, tuple(point.astype(int)), radius=1, color=(255, 255, 255), thickness=-1)
def predict_y(self, x):
return self.midvein_fit[0] * x**2 + self.midvein_fit[1] * x + self.midvein_fit[2]
def order_middle(self):
if 'middle' not in self.points_list:
self.keep_going = False
else:
if len(self.points_list['middle']) >= 5:
self.logger.debug(f"Ordered Middle - Raw list contains {len(self.points_list['middle'])} points - using momentum")
self.ordered_middle = self.order_points(self.points_list['middle'])
self.ordered_middle = self.remove_duplicate_points(self.ordered_middle)
self.ordered_middle = self.check_momentum(self.ordered_middle, False)
self.v_tip = self.find_v_tip(self.points_list['outer'])
# self.ordered_middle.append(self.v_tip)
self.order_points_plot(self.ordered_middle, 'middle', 'QC')
self.ordered_middle_length, self.ordered_middle = self.get_length_of_ordered_points(self.ordered_middle, 'middle')
self.has_middle = True
else:
self.keep_going = False
self.logger.debug(f"Ordered Middle - Raw list contains {len(self.points_list['middle'])} points - SKIPPING MIDDLE")
def v_shape_template(self, tip, scale):
return np.array([
[tip[0] - scale, tip[1] + scale],
tip,
[tip[0] + scale, tip[1] + scale]
])
def error_function(self, params, points):
tip = params[:2]
scale = params[2]
template_points = self.v_shape_template(tip, scale)
error = 0
for p in points:
dist = np.min(np.linalg.norm(template_points - p, axis=1))
error += dist
return error
def find_v_tip(self, points):
points = np.array(points)
initial_guess = np.mean(points, axis=0)
initial_scale = np.linalg.norm(np.max(points, axis=0) - np.min(points, axis=0)) / 2
result = minimize(
self.error_function,
np.hstack([initial_guess, initial_scale]),
args=(points,),
method='Nelder-Mead'
)
tip = result.x[:2]
return tuple(map(int, tip))
def show_QC_image(self):
if self.do_show_QC_images:
cv2.imshow('QC image', self.image)
cv2.waitKey(0)
def show_angle_image(self):
if self.do_show_QC_images:
cv2.imshow('Angles image', self.image_angles)
cv2.waitKey(0)
def show_final_image(self):
if self.do_show_final_images:
cv2.imshow('Final image', self.image_final)
cv2.waitKey(0)
def get_length_of_ordered_points(self, points, name):
# if self.file_name == 'B_774373631_Ebenaceae_Diospyros_buxifolia__L__438-687-578-774':
# print('hi')
total_length = 0
total_length_first_pass = 0
for i in range(len(points) - 1):
x1, y1 = points[i]
x2, y2 = points[i+1]
segment_length = math.sqrt((x2-x1)**2 + (y2-y1)**2)
total_length_first_pass += segment_length
cutoff = total_length_first_pass / 2
# print(f'Total length of {name}: {total_length_first_pass}')
# print(f'points length {len(points)}')
self.logger.debug(f"Total length of {name}: {total_length_first_pass}")
self.logger.debug(f"Points length {len(points)}")
# If there are more than 2 points, this will exclude extreme outliers, or
# misordered points that don't belong
if len(points) > 2:
pop_ind = []
for i in range(len(points) - 1):
x1, y1 = points[i]
x2, y2 = points[i+1]
segment_length = math.sqrt((x2-x1)**2 + (y2-y1)**2)
if segment_length < cutoff:
total_length += segment_length
else:
pop_ind.append(i)
for exclude in pop_ind:
points.pop(exclude)
# print(f'Total length of {name}: {total_length}')
# print(f'Excluded {len(pop_ind)} points')
# print(f'points length {len(points)}')
self.logger.debug(f"Total length of {name}: {total_length}")
self.logger.debug(f"Excluded {len(pop_ind)} points")
self.logger.debug(f"Points length {len(points)}")
else:
total_length = total_length_first_pass
return total_length, points
def order_points_plot(self, points, version, QC_or_final):
# thk_base = 0
thk_base = 16
if version == 'middle':
# color = (0, 255, 0)
color = gc('green') # blue
thick = 1 #2 + thk_base
elif version == 'tip':
color = gc('green')
thick = 1 #2 + thk_base
elif version == 'outer':
color = gc('red')
thick = 1 #2 + thk_base
elif version == 'outer_left':
color = gc('pink')
thick = 1 #2 + thk_base
elif version == 'outer_right':
color = gc('cyan')
thick = 1 #2 + thk_base
# elif version == 'lamina_width_alt':
# color = (100, 100, 255)
# thick = 2 + thk_base
# elif version == 'not_reflex':
# color = (200, 0, 123)
# thick = 3 + thk_base
# elif version == 'reflex':
# color = (0, 120, 200)
# thick = 3 + thk_base
# elif version == 'petiole_tip_alt':
# color = (255, 55, 100)
# thick = 1 + thk_base
# elif version == 'petiole_tip':
# color = (100, 255, 55)
# thick = 1 + thk_base
# elif version == 'failed_angle':
# color = (0, 0, 0)
# thick = 3 + thk_base
# Convert the points to a numpy array and round to integer values
points_arr = np.round(np.array(points)).astype(int)
# Draw a green line connecting all of the points
if QC_or_final == 'QC':
for i in range(len(points_arr) - 1):
cv2.line(self.image, tuple(points_arr[i]), tuple(points_arr[i+1]), color, thick)
else:
for i in range(len(points_arr) - 1):
cv2.line(self.image_final, tuple(points_arr[i]), tuple(points_arr[i+1]), color, thick)
def check_momentum(self, coords, info):
original_coords = coords
# find middle index of coordinates
mid_idx = len(coords) // 2
# set up variables for running average
running_avg = np.array(coords[mid_idx-1])
avg_count = 1
# iterate over coordinates to check momentum change
prev_vec = np.array(coords[mid_idx-1]) - np.array(coords[mid_idx-2])
cur_idx = mid_idx - 1
while cur_idx >= 0:
cur_vec = np.array(coords[cur_idx]) - np.array(coords[cur_idx-1])
# add current point to running average
running_avg = (running_avg * avg_count + np.array(coords[cur_idx])) / (avg_count + 1)
avg_count += 1
# check for momentum change
if self.check_momentum_change(prev_vec, cur_vec):
break
prev_vec = cur_vec
cur_idx -= 1
# use running average to check for momentum change
cur_vec = np.array(coords[cur_idx]) - running_avg
if self.check_momentum_change(prev_vec, cur_vec):
cur_idx += 1
prev_vec = np.array(coords[mid_idx+1]) - np.array(coords[mid_idx])
cur_idx2 = mid_idx + 1
while cur_idx2 < len(coords):
# check if current index is out of range
if cur_idx2 >= len(coords):
break
cur_vec = np.array(coords[cur_idx2]) - np.array(coords[cur_idx2-1])
# add current point to running average
running_avg = (running_avg * avg_count + np.array(coords[cur_idx2])) / (avg_count + 1)
avg_count += 1
# check for momentum change
if self.check_momentum_change(prev_vec, cur_vec):
break
prev_vec = cur_vec
cur_idx2 += 1
# use running average to check for momentum change
if cur_idx2 < len(coords):
cur_vec = np.array(coords[cur_idx2]) - running_avg
if self.check_momentum_change(prev_vec, cur_vec):
cur_idx2 -= 1
# remove problematic points and subsequent points from list of coordinates
new_coords = coords[:cur_idx2] + coords[mid_idx:cur_idx2:-1]
if info:
return new_coords, len(original_coords) != len(new_coords)
else:
return new_coords
# define function to check for momentum change
def check_momentum_change(self, prev_vec, cur_vec):
dot_product = np.dot(prev_vec, cur_vec)
prev_norm = np.linalg.norm(prev_vec)
cur_norm = np.linalg.norm(cur_vec)
denom = (prev_norm * cur_norm)
if denom == 0:
denom = 0.0000000001
cos_theta = dot_product / denom
theta = np.arccos(cos_theta)
return abs(theta) > np.pi / 2
def remove_duplicate_points(self, points):
unique_set = set()
new_list = []
for item in points:
if item not in unique_set:
unique_set.add(item)
new_list.append(item)
return new_list
def distance(self, point1, point2):
x1, y1 = point1
x2, y2 = point2
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
### Shortest distance
def order_points(self, points):
points = [tuple(point) for point in points] # Convert numpy.ndarray points to tuples
best_tour = None
shortest_tour_length = float('inf')
for start_point in points:
tour = [start_point]
unvisited = set(points) - {start_point}
while unvisited:
nearest = min(unvisited, key=lambda point: self.distance(tour[-1], point))
tour.append(nearest)
unvisited.remove(nearest)
# Calculate the length of the current tour
tour_length = sum(self.distance(tour[i - 1], tour[i]) for i in range(1, len(tour)))
# Update the best_tour if the current tour is shorter
if tour_length < shortest_tour_length:
shortest_tour_length = tour_length
best_tour = tour
return best_tour
### Smoothest
'''
def angle_between_points(self, p1, p2, p3):
v1 = np.array([p1[0] - p2[0], p1[1] - p2[1]])
v2 = np.array([p3[0] - p2[0], p3[1] - p2[1]])
angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)))
return angle
def order_points(self, points):
points = [tuple(point) for point in points] # Convert numpy.ndarray points to tuples
best_tour = None
largest_sum_angles = 0
for start_point in points:
tour = [start_point]
unvisited = set(points) - {start_point}
while unvisited:
nearest = min(unvisited, key=lambda point: self.distance(tour[-1], point))
tour.append(nearest)
unvisited.remove(nearest)
# Calculate the sum of angles for the current tour
sum_angles = sum(self.angle_between_points(tour[i - 1], tour[i], tour[i + 1]) for i in range(1, len(tour) - 1))
# Update the best_tour if the current tour has a larger sum of angles
if sum_angles > largest_sum_angles:
largest_sum_angles = sum_angles
best_tour = tour
return best_tour
'''
### ^^^ Smoothest
def convert_YOLO_bbox_to_point(self):
for point_type, bbox in self.points_list.items():
xy_points = []
for point in bbox:
x = point[0]
y = point[1]
w = point[2]
h = point[3]
x1 = int((x - w/2) * self.width)
y1 = int((y - h/2) * self.height)
x2 = int((x + w/2) * self.width)
y2 = int((y + h/2) * self.height)
xy_points.append((int((x1+x2)/2), int((y1+y2)/2)))
self.points_list[point_type] = xy_points
def parse_all_points(self):
points_list = {}
for sublist in self.all_points:
key = sublist[0]
value = sublist[1:]
key = self.swap_number_for_string(key)
if key not in points_list:
points_list[key] = []
points_list[key].append(value)
# print(points_list)
self.points_list = points_list
def swap_number_for_string(self, key):
for k, v in self.classes.items():
if v == key:
return k
return key
def setup_final_image(self):
self.image_final = cv2.imread(os.path.join(self.dir_temp, '.'.join([self.file_name, 'jpg'])))
if self.leaf_type == 'Landmarks_Armature':
self.path_image_final = os.path.join(self.Dirs.landmarks_armature_overlay_final, '.'.join([self.file_name, 'jpg']))
def setup_QC_image(self):
self.image = cv2.imread(os.path.join(self.dir_temp, '.'.join([self.file_name, 'jpg'])))
if self.leaf_type == 'Landmarks_Armature':
self.path_QC_image = os.path.join(self.Dirs.landmarks_armature_overlay_QC, '.'.join([self.file_name, 'jpg']))
def setup_angle_image(self):
self.image_angles = cv2.imread(os.path.join(self.dir_temp, '.'.join([self.file_name, 'jpg'])))
if self.leaf_type == 'Landmarks_Armature':
self.path_angles_image = os.path.join(self.Dirs.landmarks_armature_overlay_angles, '.'.join([self.file_name, 'jpg']))
def define_landmark_classes(self):
self.classes = {
'tip': 0,
'middle': 1,
'outer': 2,
}
def set_cfg_values(self):
self.do_show_QC_images = self.cfg['leafmachine']['landmark_detector_armature']['do_show_QC_images']
self.do_save_QC_images = self.cfg['leafmachine']['landmark_detector_armature']['do_save_QC_images']
self.do_show_final_images = self.cfg['leafmachine']['landmark_detector_armature']['do_show_final_images']
self.do_save_final_images = self.cfg['leafmachine']['landmark_detector_armature']['do_save_final_images']
def init_lists_dicts(self):
# Initialize all lists and dictionaries
self.classes = {}
self.points_list = []
self.image = []
self.ordered_middle = []
self.midvein_fit = []
self.midvein_fit_points = []
self.outer_right = []
self.outer_left = []
# self.ordered_outer_left = []
# self.ordered_outer_right = []
self.tip = []
self.apex_left = []
self.apex_right = []
self.apex_center = []
self.base_left = []
self.base_right = []
self.base_center = []
self.lamina_base = []
self.width_left = []
self.width_right = []
def get_final(self):
self.image_final = np.hstack((self.image, self.image_angles))
return self.image_final
def euclidean_distance(p1, p2):
return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
def gc(color):
colors = {
'red': (0, 0, 255),
'green': (0, 255, 0),
'blue': (255, 0, 0),
'yellow': (0, 255, 255),
'pink': (255, 0, 255),
'cyan': (255, 255, 0),
'black': (0, 0, 0),
'white': (255, 255, 255),
'gray': (128, 128, 128),
'orange': (0, 165, 255),
'purple': (128, 0, 128),
'lightpink': (203, 192, 255),
'brown': (42, 42, 165),
'navy': (128, 0, 0),
'teal': (128, 128, 0),
}
return colors.get(color.lower(), (0, 0, 0))
|