Spaces:
Running
Running
File size: 8,484 Bytes
9d06861 e91ac58 ae215ea e91ac58 567930d e91ac58 567930d ae215ea e91ac58 567930d e91ac58 567930d e91ac58 567930d e91ac58 567930d e91ac58 567930d e91ac58 567930d e91ac58 9d06861 e91ac58 567930d e91ac58 567930d e91ac58 567930d e91ac58 9d06861 567930d ae215ea 9d06861 ae215ea 9d06861 e91ac58 9d06861 e91ac58 567930d 9d06861 e91ac58 9d06861 e91ac58 567930d e91ac58 ae215ea 9d06861 e91ac58 567930d e91ac58 9d06861 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os, time, random, torch, json
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.output_parsers import RetryWithErrorOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template
class MistralHandler:
RETRY_DELAY = 2 # Wait 10 seconds before retrying
MAX_RETRIES = 5 # Maximum number of retries
STARTING_TEMP = 0.5 #0.01
TOKENIZER_NAME = None
VENDOR = 'mistral'
RANDOM_SEED = 2023
def __init__(self, cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation):
self.cfg = cfg
self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO']
self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO']
self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia']
self.logger = logger
self.monitor = SystemLoadMonitor(logger)
self.has_GPU = torch.cuda.is_available()
self.model_name = model_name
self.JSON_dict_structure = JSON_dict_structure
self.config_vals_for_permutation = config_vals_for_permutation
# Set up a parser
self.parser = JsonOutputParser()
# Define the prompt template
self.prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": self.parser.get_format_instructions()},
)
self._set_config()
def _set_config(self):
if self.config_vals_for_permutation:
self.starting_temp = float(self.config_vals_for_permutation.get('mistral').get('temperature'))
self.config = {
'max_tokens': self.config_vals_for_permutation.get('mistral').get('max_tokens'),
'temperature': self.starting_temp,
'top_p': self.config_vals_for_permutation.get('mistral').get('top_p'),
'top_k': self.config_vals_for_permutation.get('mistral').get('top_k'),
'safe_mode': self.config_vals_for_permutation.get('mistral').get('safe_mode'),
'random_seed': self.config_vals_for_permutation.get('mistral').get('random_seed'),
}
else:
self.starting_temp = float(self.STARTING_TEMP)
self.config = {
'max_tokens': 1024,
'temperature': self.starting_temp,
'random_seed': self.RANDOM_SEED,
'safe_mode': False,
'top_p': 0.5,
'top_k': 0.5,
}
self.temp_increment = float(0.2)
self.adjust_temp = self.starting_temp
self._build_model_chain_parser()
def _adjust_config(self):
new_temp = self.adjust_temp + self.temp_increment
self.config['random_seed'] = random.randint(1, 1000)
if self.json_report:
self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp} and random_seed to {self.config.get("random_seed")}')
self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp} and random_seed to {self.config.get("random_seed")}')
self.adjust_temp += self.temp_increment
self.config['temperature'] = self.adjust_temp
def _reset_config(self):
if self.json_report:
self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp} and random_seed to {self.RANDOM_SEED}')
self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {self.starting_temp} and random_seed to {self.RANDOM_SEED}')
self.adjust_temp = self.starting_temp
self.config['temperature'] = self.starting_temp
self.config['random_seed'] = self.RANDOM_SEED
def _build_model_chain_parser(self):
# Initialize MistralAI
self.llm_model = ChatMistralAI(mistral_api_key=os.environ.get("MISTRAL_API_KEY"),
model=self.model_name,
max_tokens=self.config.get('max_tokens'),
safe_mode=self.config.get('safe_mode'),
top_p=self.config.get('top_p'),
top_k=self.config.get('top_k'),
)
# Set up the retry parser with the runnable
self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.llm_model, max_retries=self.MAX_RETRIES)
self.chain = self.prompt | self.llm_model
def call_llm_api_MistralAI(self, prompt_template, json_report, paths):
_____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths
self.json_report = json_report
if self.json_report:
self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
self.monitor.start_monitoring_usage()
nt_in = 0
nt_out = 0
ind = 0
while ind < self.MAX_RETRIES:
ind += 1
try:
# model_kwargs = {"temperature": self.adjust_temp, "random_seed": self.config.get("random_seed")}
# Invoke the chain to generate prompt text
response = self.chain.invoke({"query": prompt_template})#, "model_kwargs": model_kwargs})
# Use retry_parser to parse the response with retry logic
output = self.retry_parser.parse_with_prompt(response.content, prompt_value=prompt_template)
if output is None:
self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response}')
self._adjust_config()
else:
nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
nt_out = count_tokens(response.content, self.VENDOR, self.TOKENIZER_NAME)
output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
if output is None:
self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response}')
self._adjust_config()
else:
self.monitor.stop_inference_timer() # Starts tool timer too
if self.json_report:
self.json_report.set_text(text_main=f'Working on WFO, Geolocation, Links')
output_WFO, WFO_record, output_GEO, GEO_record = run_tools(output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki)
save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt)
self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")
usage_report = self.monitor.stop_monitoring_report_usage()
if self.adjust_temp != self.starting_temp:
self._reset_config()
if self.json_report:
self.json_report.set_text(text_main=f'LLM call successful')
return output, nt_in, nt_out, WFO_record, GEO_record, usage_report
except Exception as e:
self.logger.error(f'JSON Parsing Error (LangChain): {e}')
self._adjust_config()
time.sleep(self.RETRY_DELAY)
self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
if self.json_report:
self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')
self.monitor.stop_inference_timer() # Starts tool timer too
usage_report = self.monitor.stop_monitoring_report_usage()
self._reset_config()
if self.json_report:
self.json_report.set_text(text_main=f'LLM call failed')
return None, nt_in, nt_out, None, None, usage_report
|