Spaces:
Running
Running
File size: 42,492 Bytes
87c3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
General utils
"""
import contextlib
import glob
import inspect
import logging
import math
import os
import platform
import random
import re
import shutil
import signal
import time
import urllib
from datetime import datetime
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from subprocess import check_output
from typing import Optional
from zipfile import ZipFile
import cv2
import numpy as np
import pandas as pd
import pkg_resources as pkg
import torch
import torchvision
import yaml
# from utils.downloads import gsutil_getsize
# from utils.metrics import box_iou, fitness
# Settings
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
os.environ['OMP_NUM_THREADS'] = str(NUM_THREADS) # OpenMP max threads (PyTorch and SciPy)
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter)
def fitness(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def gsutil_getsize(url=''):
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
from utils.general import LOGGER
file = Path(file)
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
try: # url1
LOGGER.info(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
except Exception as e: # url2
file.unlink(missing_ok=True) # remove partial downloads
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
finally:
if not file.exists() or file.stat().st_size < min_bytes: # check
file.unlink(missing_ok=True) # remove partial downloads
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
LOGGER.info('')
def is_kaggle():
# Is environment a Kaggle Notebook?
try:
assert os.environ.get('PWD') == '/kaggle/working'
assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
return True
except AssertionError:
return False
def is_writeable(dir, test=False):
# Return True if directory has write permissions, test opening a file with write permissions if test=True
if test: # method 1
file = Path(dir) / 'tmp.txt'
try:
with open(file, 'w'): # open file with write permissions
pass
file.unlink() # remove file
return True
except OSError:
return False
else: # method 2
return os.access(dir, os.R_OK) # possible issues on Windows
def set_logging(name=None, verbose=VERBOSE):
# Sets level and returns logger
if is_kaggle():
for h in logging.root.handlers:
logging.root.removeHandler(h) # remove all handlers associated with the root logger object
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
level = logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING
log = logging.getLogger(name)
log.setLevel(level)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter("%(message)s"))
handler.setLevel(level)
log.addHandler(handler)
set_logging() # run before defining LOGGER
LOGGER = logging.getLogger("yolov5") # define globally (used in train.py, val.py, detect.py, etc.)
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
env = os.getenv(env_var)
if env:
path = Path(env) # use environment variable
else:
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
path.mkdir(exist_ok=True) # make if required
return path
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
class Profile(contextlib.ContextDecorator):
# Usage: @Profile() decorator or 'with Profile():' context manager
def __enter__(self):
self.start = time.time()
def __exit__(self, type, value, traceback):
print(f'Profile results: {time.time() - self.start:.5f}s')
class Timeout(contextlib.ContextDecorator):
# Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
self.seconds = int(seconds)
self.timeout_message = timeout_msg
self.suppress = bool(suppress_timeout_errors)
def _timeout_handler(self, signum, frame):
raise TimeoutError(self.timeout_message)
def __enter__(self):
if platform.system() != 'Windows': # not supported on Windows
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
def __exit__(self, exc_type, exc_val, exc_tb):
if platform.system() != 'Windows':
signal.alarm(0) # Cancel SIGALRM if it's scheduled
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
return True
class WorkingDirectory(contextlib.ContextDecorator):
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
def __init__(self, new_dir):
self.dir = new_dir # new dir
self.cwd = Path.cwd().resolve() # current dir
def __enter__(self):
os.chdir(self.dir)
def __exit__(self, exc_type, exc_val, exc_tb):
os.chdir(self.cwd)
def try_except(func):
# try-except function. Usage: @try_except decorator
def handler(*args, **kwargs):
try:
func(*args, **kwargs)
except Exception as e:
print(e)
return handler
def methods(instance):
# Get class/instance methods
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
# Print function arguments (optional args dict)
x = inspect.currentframe().f_back # previous frame
file, _, fcn, _, _ = inspect.getframeinfo(x)
if args is None: # get args automatically
args, _, _, frm = inspect.getargvalues(x)
args = {k: v for k, v in frm.items() if k in args}
s = (f'{Path(file).stem}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '')
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
def init_seeds(seed=0):
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
import torch.backends.cudnn as cudnn
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
def get_latest_run(search_dir='.'):
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
return max(last_list, key=os.path.getctime) if last_list else ''
def is_docker():
# Is environment a Docker container?
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
def is_colab():
# Is environment a Google Colab instance?
try:
import google.colab
return True
except ImportError:
return False
def is_pip():
# Is file in a pip package?
return 'site-packages' in Path(__file__).resolve().parts
def is_ascii(s=''):
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
s = str(s) # convert list, tuple, None, etc. to str
return len(s.encode().decode('ascii', 'ignore')) == len(s)
def is_chinese(s='人工智能'):
# Is string composed of any Chinese characters?
return True if re.search('[\u4e00-\u9fff]', str(s)) else False
def emojis(str=''):
# Return platform-dependent emoji-safe version of string
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
def file_age(path=__file__):
# Return days since last file update
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
return dt.days # + dt.seconds / 86400 # fractional days
def file_update_date(path=__file__):
# Return human-readable file modification date, i.e. '2021-3-26'
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
return f'{t.year}-{t.month}-{t.day}'
def file_size(path):
# Return file/dir size (MB)
mb = 1 << 20 # bytes to MiB (1024 ** 2)
path = Path(path)
if path.is_file():
return path.stat().st_size / mb
elif path.is_dir():
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
else:
return 0.0
def check_online():
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
return True
except OSError:
return False
def git_describe(path=ROOT): # path must be a directory
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
try:
assert (Path(path) / '.git').is_dir()
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
except Exception:
return ''
@try_except
@WorkingDirectory(ROOT)
def check_git_status():
# Recommend 'git pull' if code is out of date
msg = ', for updates see https://github.com/ultralytics/yolov5'
s = colorstr('github: ') # string
assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
assert not is_docker(), s + 'skipping check (Docker image)' + msg
assert check_online(), s + 'skipping check (offline)' + msg
cmd = 'git fetch && git config --get remote.origin.url'
url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch
branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
if n > 0:
s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
else:
s += f'up to date with {url} ✅'
LOGGER.info(emojis(s)) # emoji-safe
def check_python(minimum='3.7.0'):
# Check current python version vs. required python version
check_version(platform.python_version(), minimum, name='Python ', hard=True)
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
# Check version vs. required version
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
result = (current == minimum) if pinned else (current >= minimum) # bool
s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' # string
if hard:
assert result, s # assert min requirements met
if verbose and not result:
LOGGER.warning(s)
return result
@try_except
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=()):
# Check installed dependencies meet requirements (pass *.txt file or list of packages)
prefix = colorstr('red', 'bold', 'requirements:')
check_python() # check python version
if isinstance(requirements, (str, Path)): # requirements.txt file
file = Path(requirements)
assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
with file.open() as f:
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
else: # list or tuple of packages
requirements = [x for x in requirements if x not in exclude]
n = 0 # number of packages updates
for i, r in enumerate(requirements):
try:
pkg.require(r)
except Exception: # DistributionNotFound or VersionConflict if requirements not met
s = f"{prefix} {r} not found and is required by YOLOv5"
if install and AUTOINSTALL: # check environment variable
LOGGER.info(f"{s}, attempting auto-update...")
try:
assert check_online(), f"'pip install {r}' skipped (offline)"
LOGGER.info(check_output(f"pip install '{r}' {cmds[i] if cmds else ''}", shell=True).decode())
n += 1
except Exception as e:
LOGGER.warning(f'{prefix} {e}')
else:
LOGGER.info(f'{s}. Please install and rerun your command.')
if n: # if packages updated
source = file.resolve() if 'file' in locals() else requirements
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
LOGGER.info(emojis(s))
def check_img_size(imgsz, s=32, floor=0):
# Verify image size is a multiple of stride s in each dimension
if isinstance(imgsz, int): # integer i.e. img_size=640
new_size = max(make_divisible(imgsz, int(s)), floor)
else: # list i.e. img_size=[640, 480]
imgsz = list(imgsz) # convert to list if tuple
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
if new_size != imgsz:
LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
return new_size
def check_imshow():
# Check if environment supports image displays
try:
assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
cv2.imshow('test', np.zeros((1, 1, 3)))
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)
return True
except Exception as e:
LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
return False
def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
# Check file(s) for acceptable suffix
if file and suffix:
if isinstance(suffix, str):
suffix = [suffix]
for f in file if isinstance(file, (list, tuple)) else [file]:
s = Path(f).suffix.lower() # file suffix
if len(s):
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
def check_yaml(file, suffix=('.yaml', '.yml')):
# Search/download YAML file (if necessary) and return path, checking suffix
return check_file(file, suffix)
def check_file(file, suffix=''):
# Search/download file (if necessary) and return path
check_suffix(file, suffix) # optional
file = str(file) # convert to str()
if Path(file).is_file() or file == '': # exists
return file
elif file.startswith(('http:/', 'https:/')): # download
url = str(Path(file)).replace(':/', '://') # Pathlib turns :// -> :/
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
if Path(file).is_file():
LOGGER.info(f'Found {url} locally at {file}') # file already exists
else:
LOGGER.info(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, file)
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
return file
else: # search
files = []
for d in 'data', 'models', 'utils': # search directories
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
assert len(files), f'File not found: {file}' # assert file was found
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
return files[0] # return file
def check_font(font=FONT, progress=False):
# Download font to CONFIG_DIR if necessary
font = Path(font)
file = CONFIG_DIR / font.name
if not font.exists() and not file.exists():
url = "https://ultralytics.com/assets/" + font.name
LOGGER.info(f'Downloading {url} to {file}...')
torch.hub.download_url_to_file(url, str(file), progress=progress)
def check_dataset(data, autodownload=True):
# Download and/or unzip dataset if not found locally
# Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
# Download (optional)
extract_dir = ''
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1)
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False
# Read yaml (optional)
if isinstance(data, (str, Path)):
with open(data, errors='ignore') as f:
data = yaml.safe_load(f) # dictionary
# Resolve paths
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
if not path.is_absolute():
path = (ROOT / path).resolve()
for k in 'train', 'val', 'test':
if data.get(k): # prepend path
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
# Parse yaml
assert 'nc' in data, "Dataset 'nc' key missing."
if 'names' not in data:
data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
if val:
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
LOGGER.info(emojis('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()]))
if s and autodownload: # download script
t = time.time()
root = path.parent if 'path' in data else '..' # unzip directory i.e. '../'
if s.startswith('http') and s.endswith('.zip'): # URL
f = Path(s).name # filename
LOGGER.info(f'Downloading {s} to {f}...')
torch.hub.download_url_to_file(s, f)
Path(root).mkdir(parents=True, exist_ok=True) # create root
ZipFile(f).extractall(path=root) # unzip
Path(f).unlink() # remove zip
r = None # success
elif s.startswith('bash '): # bash script
LOGGER.info(f'Running {s} ...')
r = os.system(s)
else: # python script
r = exec(s, {'yaml': data}) # return None
dt = f'({round(time.time() - t, 1)}s)'
s = f"success ✅ {dt}, saved to {colorstr('bold', root)}" if r in (0, None) else f"failure {dt} ❌"
LOGGER.info(emojis(f"Dataset download {s}"))
else:
raise Exception(emojis('Dataset not found ❌'))
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
return data # dictionary
def url2file(url):
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
file = Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
return file
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
# Multi-threaded file download and unzip function, used in data.yaml for autodownload
def download_one(url, dir):
# Download 1 file
success = True
f = dir / Path(url).name # filename
if Path(url).is_file(): # exists in current path
Path(url).rename(f) # move to dir
elif not f.exists():
LOGGER.info(f'Downloading {url} to {f}...')
for i in range(retry + 1):
if curl:
s = 'sS' if threads > 1 else '' # silent
r = os.system(f"curl -{s}L '{url}' -o '{f}' --retry 9 -C -") # curl download
success = r == 0
else:
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
success = f.is_file()
if success:
break
elif i < retry:
LOGGER.warning(f'Download failure, retrying {i + 1}/{retry} {url}...')
else:
LOGGER.warning(f'Failed to download {url}...')
if unzip and success and f.suffix in ('.zip', '.gz'):
LOGGER.info(f'Unzipping {f}...')
if f.suffix == '.zip':
ZipFile(f).extractall(path=dir) # unzip
elif f.suffix == '.gz':
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
if delete:
f.unlink() # remove zip
dir = Path(dir)
dir.mkdir(parents=True, exist_ok=True) # make directory
if threads > 1:
pool = ThreadPool(threads)
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
pool.close()
pool.join()
else:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
def make_divisible(x, divisor):
# Returns nearest x divisible by divisor
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def clean_str(s):
# Cleans a string by replacing special characters with underscore _
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
def one_cycle(y1=0.0, y2=1.0, steps=100):
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def colorstr(*input):
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
colors = {
'black': '\033[30m', # basic colors
'red': '\033[31m',
'green': '\033[32m',
'yellow': '\033[33m',
'blue': '\033[34m',
'magenta': '\033[35m',
'cyan': '\033[36m',
'white': '\033[37m',
'bright_black': '\033[90m', # bright colors
'bright_red': '\033[91m',
'bright_green': '\033[92m',
'bright_yellow': '\033[93m',
'bright_blue': '\033[94m',
'bright_magenta': '\033[95m',
'bright_cyan': '\033[96m',
'bright_white': '\033[97m',
'end': '\033[0m', # misc
'bold': '\033[1m',
'underline': '\033[4m'}
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
def labels_to_class_weights(labels, nc=80):
# Get class weights (inverse frequency) from training labels
if labels[0] is None: # no labels loaded
return torch.Tensor()
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
classes = labels[:, 0].astype(int) # labels = [class xywh]
weights = np.bincount(classes, minlength=nc) # occurrences per class
# Prepend gridpoint count (for uCE training)
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
weights[weights == 0] = 1 # replace empty bins with 1
weights = 1 / weights # number of targets per class
weights /= weights.sum() # normalize
return torch.from_numpy(weights)
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
# Produces image weights based on class_weights and image contents
class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
return image_weights
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
x = [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
return x
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
return y
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
if clip:
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
return y
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
# Convert normalized segments into pixel segments, shape (n,2)
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = w * x[:, 0] + padw # top left x
y[:, 1] = h * x[:, 1] + padh # top left y
return y
def segment2box(segment, width=640, height=640):
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
x, y, = x[inside], y[inside]
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
def segments2boxes(segments):
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
boxes = []
for s in segments:
x, y = s.T # segment xy
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
return xyxy2xywh(np.array(boxes)) # cls, xywh
def resample_segments(segments, n=1000):
# Up-sample an (n,2) segment
for i, s in enumerate(segments):
x = np.linspace(0, len(s) - 1, n)
xp = np.arange(len(s))
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
return segments
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
clip_coords(coords, img0_shape)
return coords
def clip_coords(boxes, shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[:, 0].clamp_(0, shape[1]) # x1
boxes[:, 1].clamp_(0, shape[0]) # y1
boxes[:, 2].clamp_(0, shape[1]) # x2
boxes[:, 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
def non_max_suppression(prediction,
conf_thres=0.25,
iou_thres=0.45,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300):
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes
Returns:
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
"""
bs = prediction.shape[0] # batch size
nc = prediction.shape[2] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# Checks
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
# Settings
# min_wh = 2 # (pixels) minimum box width and height
max_wh = 7680 # (pixels) maximum box width and height
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 0.1 + 0.03 * bs # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
t = time.time()
output = [torch.zeros((0, 6), device=prediction.device)] * bs
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# Cat apriori labels if autolabelling
if labels and len(labels[xi]):
lb = labels[xi]
v = torch.zeros((len(lb), nc + 5), device=x.device)
v[:, :4] = lb[:, 1:5] # box
v[:, 4] = 1.0 # conf
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
x = torch.cat((x, v), 0)
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
elif n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
output[xi] = x[i]
if (time.time() - t) > time_limit:
LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded')
break # time limit exceeded
return output
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
# Strip optimizer from 'f' to finalize training, optionally save as 's'
x = torch.load(f, map_location=torch.device('cpu'))
if x.get('ema'):
x['model'] = x['ema'] # replace model with ema
for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates': # keys
x[k] = None
x['epoch'] = -1
x['model'].half() # to FP16
for p in x['model'].parameters():
p.requires_grad = False
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1E6 # filesize
LOGGER.info(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
evolve_csv = save_dir / 'evolve.csv'
evolve_yaml = save_dir / 'hyp_evolve.yaml'
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
keys = tuple(x.strip() for x in keys)
vals = results + tuple(hyp.values())
n = len(keys)
# Download (optional)
if bucket:
url = f'gs://{bucket}/evolve.csv'
if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
# Log to evolve.csv
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
with open(evolve_csv, 'a') as f:
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
# Save yaml
with open(evolve_yaml, 'w') as f:
data = pd.read_csv(evolve_csv)
data = data.rename(columns=lambda x: x.strip()) # strip keys
i = np.argmax(fitness(data.values[:, :4])) #
generations = len(data)
f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
'\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
# Print to screen
LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
for x in vals) + '\n\n')
if bucket:
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
def apply_classifier(x, model, img, im0):
# Apply a second stage classifier to YOLO outputs
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
im0 = [im0] if isinstance(im0, np.ndarray) else im0
for i, d in enumerate(x): # per image
if d is not None and len(d):
d = d.clone()
# Reshape and pad cutouts
b = xyxy2xywh(d[:, :4]) # boxes
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
d[:, :4] = xywh2xyxy(b).long()
# Rescale boxes from img_size to im0 size
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
# Classes
pred_cls1 = d[:, 5].long()
ims = []
for j, a in enumerate(d): # per item
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
im = cv2.resize(cutout, (224, 224)) # BGR
# cv2.imwrite('example%i.jpg' % j, cutout)
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
im /= 255 # 0 - 255 to 0.0 - 1.0
ims.append(im)
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
return x
def increment_path(path, exist_ok=False, sep='', mkdir=False):
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
path = Path(path) # os-agnostic
if path.exists() and not exist_ok:
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
dirs = glob.glob(f"{path}{sep}*") # similar paths
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m] # indices
n = max(i) + 1 if i else 2 # increment number
path = Path(f"{path}{sep}{n}{suffix}") # increment path
if mkdir:
path.mkdir(parents=True, exist_ok=True) # make directory
return path
# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
imshow_ = cv2.imshow # copy to avoid recursion errors
def imread(path, flags=cv2.IMREAD_COLOR):
return cv2.imdecode(np.fromfile(path, np.uint8), flags)
def imwrite(path, im):
try:
cv2.imencode(Path(path).suffix, im)[1].tofile(path)
return True
except Exception:
return False
def imshow(path, im):
imshow_(path.encode('unicode_escape').decode(), im)
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
# Variables ------------------------------------------------------------------------------------------------------------
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm
|