File size: 10,611 Bytes
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Run yolov5 on dir
import os
from os import walk
import pandas as pd
import shutil
import subprocess

from detect import *
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
from machine.general_utils import make_file_names_valid

# pip install cython matplotlib tqdm scipy ipython ninja yacs opencv-python ffmpeg opencv-contrib-python Pillow scikit-image scikit-learn lmfit imutils pyyaml jupyterlab==3
# pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKCYAN = '\033[96m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'


def validateDir(dir):
    if not os.path.exists(dir):
        os.makedirs(dir)

def readDetailedSampleJPGs(dirDetailed):
    f = []
    nameList = []
    for (dirpath, dirnames, filenames) in walk(dirDetailed):
        f.extend(filenames)
        break
    # print(f)
    type(f)
    fileList = pd.DataFrame(f) 
    fileList.columns = ['fname']
    df = fileList['fname'].str.split('_', expand=True)
    family = df[2]
    genus = df[3]
    species = df[4]
    species = species.str.split('.', expand=True)[0]
    nameList = family + "_" + genus + '_' + species
    nameList = pd.DataFrame(nameList) 
    nameList = pd.DataFrame(nameList[0].unique())
    nameList = nameList.dropna()
    nameList.columns = ['fullname']
    return fileList, nameList

def saveDetailedBySpecies(fileList, nameList):

    for species in nameList['fullname']:
        dirSpecies = os.path.join(dirDetailedBySpecies,species)
        validateDir(dirSpecies)

        ind = fileList['fname'].str.contains(species, regex=False)
        speciesFiles = fileList['fname'][ind]
        if len(speciesFiles) == 50:
            print(f"{bcolors.BOLD}Species: {species}   >>>   Number of Images: {len(speciesFiles)}{bcolors.ENDC}")
        else:
            print(f"{bcolors.WARNING}Species: {species}   >>>   Number of Images: {len(speciesFiles)}{bcolors.ENDC}")
        
        for img in speciesFiles:
            print(f"{bcolors.BOLD}       Copied: {img}{bcolors.ENDC}")
            shutil.copy(os.path.join(dirDetailed,img), os.path.join(dirSpecies,img))

def runYOLOforDirOfFolders(dirDetailedBySpecies,dirOutBase,nosave,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS,ANNO_TYPE):
    if INCLUDE_SUBDIRS:
        f = []
        for (dirpath, dirnames, filenames) in walk(dirDetailedBySpecies):
            f.extend(dirnames)
            break
        for species in f:
            print(species)
            dirSource = os.path.abspath(os.path.join(dirDetailedBySpecies,species))
            # dirYOLO = os.path.abspath(os.path.join('yolov5','detect.py'))
            dirWeights =  os.path.abspath(os.path.join('YOLOv5','yolov5',ANNO,VERSION,'weights','best.pt'))
            dirProject = os.path.abspath(os.path.join(dirOutBase,PROJECT,SET))
            run(weights=dirWeights,source=dirSource,project=dirProject,name=species,imgsz=(1280, 1280),nosave=nosave,anno_type=ANNO_TYPE)

    else:
        # f = []
        # for (dirpath, dirnames, filenames) in walk(dirDetailedBySpecies):
        #     f.extend(filenames)
        #     break
        print(SET)
        dirSource = dirDetailedBySpecies
        species = os.path.basename(dirSource)
        # dirYOLO = os.path.abspath(os.path.join('yolov5','detect.py'))
        # dirWeights =  os.path.join('yolov5','runs','train',ANNO,VERSION,'weights','best.pt')
        dirWeights =  os.path.join(dirOutBase,'runs','train','Archival_Detector','FieldPrism_Initial','FieldPrism_Initial7','weights','last.pt')
        dirProject = os.path.join(dirOutBase,'runs','detect',PROJECT,SET)
        run(weights=dirWeights,source=dirSource,project=dirProject,name=species,imgsz=(1280, 1280),nosave=nosave,anno_type=ANNO_TYPE)


def runYOLOforDirOfFolders_PLANT_Botany(dirDetailedBySpecies,dirOutBase,nosave,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS):
    if INCLUDE_SUBDIRS:
        f = []
        for (dirpath, dirnames, filenames) in walk(dirDetailedBySpecies):
            f.extend(dirnames)
            break
        for species in f:
            print(species)
            dirSource = os.path.abspath(os.path.join(dirDetailedBySpecies,species))
            # dirYOLO = os.path.abspath(os.path.join('yolov5','detect.py'))
            dirWeights =  os.path.abspath(os.path.join('yolov5','runs','train',ANNO,VERSION,'weights','best.pt'))
            dirProject = os.path.abspath(os.path.join(dirOutBase,PROJECT,SET))
            run(weights=dirWeights,source=dirSource,project=dirProject,name=species,imgsz=(1280, 1280),nosave=nosave)

    else:
        # f = []
        # for (dirpath, dirnames, filenames) in walk(dirDetailedBySpecies):
        #     f.extend(filenames)
        #     break
        print(SET)
        dirSource = dirDetailedBySpecies
        species = os.path.basename(dirSource)
        # dirYOLO = os.path.abspath(os.path.join('yolov5','detect.py'))
        # dirWeights =  os.path.join('yolov5','runs','train',ANNO,VERSION,'weights','best.pt')
        # dirWeights =  os.path.abspath(os.path.join('YOLOv5','yolov5',ANNO,VERSION,'weights','best.pt'))
        dirWeights =  os.path.abspath(os.path.join('YOLOv5','yolov5',ANNO,VERSION,'weights','best.pt'))
        dirProject = os.path.abspath(os.path.join(dirOutBase,PROJECT,SET))
        run(weights=dirWeights,source=dirSource,project=dirProject,name=species,imgsz=(1280, 1280),nosave=nosave)
        
    # for species in f:
    #     print(species)
    #     dirSource = os.path.abspath(os.path.join(dirDetailedBySpecies,species))
    #     dirYOLO = os.path.abspath(os.path.join('yolov5','detect.py'))
    #     dirWeights =  os.path.join('yolov5','runs','train',ANNO,VERSION,'weights','best.pt')
    #     dirProject = os.path.join(PROJECT,SET)
    #     if INCLUDE_SUBDIRS:
    #         run(weights=dirWeights,source=dirSource,project=dirProject,name=species,imgsz=(1280, 1280))
    #     else:
    #         run(weights=dirWeights,source=dirSource,project=dirProject,name=SET,imgsz=(1280, 1280))



### Parse the aggregated DetailedSample folder that has 2,500 images
# fileList, nameList = readDetailedSampleJPGs(dirDetailed)
# saveDetailedBySpecies(fileList, nameList)

### Run detect for every folder in dirDetailedBySpecies
# PROJECT = 'MAL'
# SET = 'Detailed'
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_DetailedSample_50Spp_Ind'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,PROJECT,SET,,1)

# dirDetailed = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_DetailedSample_50Spp'))
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_DetailedSample_50Spp_Ind'))
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_TargetedSample_Fraxinus'))


### Run detect for TargetedSample
# PREFIX = 'DT_MAL_'
# INCLUDE_SUBDIRS = 0
# PROJECT = 'Botany'#'Cannon'#'MAL_PLANT'
# SET = 'Demo'#'Test_Sheets_PREP'#'Targeted'
# ANNO = 'PREPfull'#'PLANTfull'
# VERSION = 'baseline_all_hypEvolve'#'baseline'

# dirDetailedBySpecies = os.path.abspath(os.path.join('Image_Datasets','Botany_Test_Images'))
# dirOutBase = os.path.abspath(os.path.join('YOLOv5'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,dirOutBase,False,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS)
# dirDetailedBySpecies = os.path.abspath(os.path.join('Image_Datasets','Cannon','Test_Sheets'))
# dirOutBase = os.path.abspath(os.path.join('YOLOv5'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,dirOutBase,False,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS)
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_TargetedSample_Quercus_havardii'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS)
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_TargetedSample_Fraxinus'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS)
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_TargetedSample_Juglandaceae'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS)
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_TargetedSample_Lonicera'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS)
# dirDetailedBySpecies = os.path.abspath(os.path.join(os.pardir,'Image_Datasets','GBIF_TargetedSample_Rhus'))
# runYOLOforDirOfFolders(dirDetailedBySpecies,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS)

INCLUDE_SUBDIRS = 0
PROJECT = 'MAL_FP' #'MAL_PLANT'#'Botany'#'Cannon'#'MAL_PLANT'
SET = 'FieldPrism_Initial' #'Detailed'#'Demo_Plant'#'Test_Sheets_PREP'#'Targeted'
ANNO = 'PREPfull'#'PLANT_Botany'#'PLANTfull'#'PREPfull
VERSION = 'baseline'#'Small_Adoxaceae'#'baseline'
ANNO_TYPE = 'PREP'

# # dirDetailedBySpecies = os.path.abspath(os.path.join('Image_Datasets','FieldPrism_Training_Images','FieldPrism_Training_FS-Poor'))
# dirDetailedBySpecies = 'D:/Dropbox/LM2_Env/Image_Datasets/FieldPrism_Training_Images/FieldPrism_Training_Sheets'
# # dirOutBase = os.path.abspath(os.path.join('YOLOv5'))
# dirOutBase = os.path.dirname(__file__)
# # dirOutBase > PROJECT > SET
# # ML network: ANNO > VERSION
# make_file_names_valid(dirDetailedBySpecies)
# runYOLOforDirOfFolders(dirDetailedBySpecies,dirOutBase,False,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS,ANNO_TYPE)

# dirDetailedBySpecies = 'D:/Dropbox/LM2_Env/Image_Datasets/FieldPrism_Training_Images/FieldPrism_Training_Outside'
# dirOutBase = os.path.dirname(__file__)
# make_file_names_valid(dirDetailedBySpecies)
# runYOLOforDirOfFolders(dirDetailedBySpecies,dirOutBase,False,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS,ANNO_TYPE)

dirDetailedBySpecies = 'D:/Dropbox/LM2_Env/Image_Datasets/FieldPrism_Training_Images/FieldPrism_Training_FS-Poor'
dirOutBase = os.path.dirname(__file__)
make_file_names_valid(dirDetailedBySpecies)
runYOLOforDirOfFolders(dirDetailedBySpecies,dirOutBase,False,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS,ANNO_TYPE)

# dirDetailedBySpecies = 'D:/Dropbox/LM2_Env/Image_Datasets/FieldPrism_Training_Images/REU_Field_QR-Code-Images'
# dirOutBase = os.path.dirname(__file__)
# make_file_names_valid(dirDetailedBySpecies)
# runYOLOforDirOfFolders(dirDetailedBySpecies,dirOutBase,False,PROJECT,SET,ANNO,VERSION,INCLUDE_SUBDIRS,ANNO_TYPE)