File size: 14,909 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import logging
import numpy as np
from tqdm import tqdm
import torch
from torch import nn
import copy
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from models.base import BaseLearner
from utils.inc_net import AdaptiveNet
from utils.toolkit import count_parameters, target2onehot, tensor2numpy

num_workers=8
EPSILON = 1e-8
batch_size = 32

class MEMO(BaseLearner):

    def __init__(self, args):
        super().__init__(args)
        self.args = args
        self._old_base = None
        self._network = AdaptiveNet(args, True)
        logging.info(f'>>> train generalized blocks:{self.args["train_base"]} train_adaptive:{self.args["train_adaptive"]}')

    def after_task(self):
        self._known_classes = self._total_classes
        if self._cur_task == 0:
            if self.args['train_base']:
                logging.info("Train Generalized Blocks...")
                self._network.TaskAgnosticExtractor.train()
                for param in self._network.TaskAgnosticExtractor.parameters():
                    param.requires_grad = True
            else:
                logging.info("Fix Generalized Blocks...")
                self._network.TaskAgnosticExtractor.eval()
                for param in self._network.TaskAgnosticExtractor.parameters():
                    param.requires_grad = False
        
        logging.info('Exemplar size: {}'.format(self.exemplar_size))

    def incremental_train(self, data_manager):
        self._cur_task += 1
        self._total_classes = self._known_classes + data_manager.get_task_size(self._cur_task)
        self._network.update_fc(self._total_classes)

        logging.info('Learning on {}-{}'.format(self._known_classes, self._total_classes))

        if self._cur_task>0:
            for i in range(self._cur_task):
                for p in self._network.AdaptiveExtractors[i].parameters():
                    if self.args['train_adaptive'] and i == self._cur_task:
                        p.requires_grad = True
                    else:
                        p.requires_grad = False

        logging.info('All params: {}'.format(count_parameters(self._network)))
        logging.info('Trainable params: {}'.format(count_parameters(self._network, True)))
        train_dataset = data_manager.get_dataset(
            np.arange(self._known_classes, self._total_classes),
            source='train',
            mode='train', 
            appendent=self._get_memory()
        )
        self.train_loader = DataLoader(
            train_dataset, 
            batch_size=self.args["batch_size"], 
            shuffle=True, 
            num_workers=num_workers
        )
        
        test_dataset = data_manager.get_dataset(
            np.arange(0, self._total_classes), 
            source='test', 
            mode='test'
        )
        self.test_loader = DataLoader(
            test_dataset, 
            batch_size=self.args["batch_size"],
            shuffle=False, 
            num_workers=num_workers
        )

        if len(self._multiple_gpus) > 1:
            self._network = nn.DataParallel(self._network, self._multiple_gpus)
        self._train(self.train_loader, self.test_loader)
        self.build_rehearsal_memory(data_manager, self.samples_per_class)
        if len(self._multiple_gpus) > 1:
            self._network = self._network.module
    
    def set_network(self):
        if len(self._multiple_gpus) > 1:
            self._network = self._network.module
        self._network.train()                   #All status from eval to train
        if self.args['train_base']:
            self._network.TaskAgnosticExtractor.train()
        else:
            self._network.TaskAgnosticExtractor.eval()
        
        # set adaptive extractor's status
        self._network.AdaptiveExtractors[-1].train()
        if self._cur_task >= 1:
            for i in range(self._cur_task):
                if self.args['train_adaptive']:
                    self._network.AdaptiveExtractors[i].train()
                else:
                    self._network.AdaptiveExtractors[i].eval()
        if len(self._multiple_gpus) > 1:
            self._network = nn.DataParallel(self._network, self._multiple_gpus)
            
    def _train(self, train_loader, test_loader):
        self._network.to(self._device)
        if self._cur_task==0:
            optimizer = optim.SGD(
                filter(lambda p: p.requires_grad, self._network.parameters()),
                momentum=0.9,
                lr=self.args["init_lr"],
                weight_decay=self.args["init_weight_decay"]
            )
            if self.args['scheduler'] == 'steplr':
                scheduler = optim.lr_scheduler.MultiStepLR(
                    optimizer=optimizer, 
                    milestones=self.args['init_milestones'], 
                    gamma=self.args['init_lr_decay']
                )
            elif self.args['scheduler'] == 'cosine':
                scheduler = optim.lr_scheduler.CosineAnnealingLR(
                    optimizer=optimizer,
                    T_max=self.args['init_epoch']
                ) 
            else:
                raise NotImplementedError
            
            if not self.args['skip']:
                self._init_train(train_loader, test_loader, optimizer, scheduler)
            else:
                if isinstance(self._network, nn.DataParallel):
                    self._network = self._network.module
                load_acc = self._network.load_checkpoint(self.args)
                self._network.to(self._device)

                if len(self._multiple_gpus) > 1:
                    self._network = nn.DataParallel(self._network, self._multiple_gpus)
                
                cur_test_acc = self._compute_accuracy(self._network, self.test_loader)
                logging.info(f"Loaded_Test_Acc:{load_acc} Cur_Test_Acc:{cur_test_acc}")
        else:
            optimizer = optim.SGD(
                filter(lambda p: p.requires_grad, self._network.parameters()), 
                lr=self.args['lrate'], 
                momentum=0.9, 
                weight_decay=self.args['weight_decay']
            )
            if self.args['scheduler'] == 'steplr':
                scheduler = optim.lr_scheduler.MultiStepLR(
                    optimizer=optimizer,
                    milestones=self.args['milestones'], 
                    gamma=self.args['lrate_decay']
                )
            elif self.args['scheduler'] == 'cosine':
                assert self.args['t_max'] is not None
                scheduler = optim.lr_scheduler.CosineAnnealingLR(
                    optimizer=optimizer,
                    T_max=self.args['t_max']
                )
            else:
                raise NotImplementedError
            self._update_representation(train_loader, test_loader, optimizer, scheduler)
            if len(self._multiple_gpus) > 1:
                self._network.module.weight_align(self._total_classes-self._known_classes)
            else:
                self._network.weight_align(self._total_classes-self._known_classes)

            
    def _init_train(self,train_loader,test_loader,optimizer,scheduler):
        prog_bar = tqdm(range(self.args["init_epoch"]))
        for _, epoch in enumerate(prog_bar):
            self._network.train()
            losses = 0.
            correct, total = 0, 0
            for i, (_, inputs, targets) in enumerate(train_loader):
                inputs, targets = inputs.to(self._device), targets.to(self._device)
                logits = self._network(inputs)['logits']

                loss=F.cross_entropy(logits,targets) 
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                losses += loss.item()

                _, preds = torch.max(logits, dim=1)
                correct += preds.eq(targets.expand_as(preds)).cpu().sum()
                total += len(targets)

            scheduler.step()
            train_acc = np.around(tensor2numpy(correct)*100 / total, decimals=2)
            if epoch%5==0:
                test_acc = self._compute_accuracy(self._network, test_loader)
                info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format(
                self._cur_task, epoch+1, self.args['init_epoch'], losses/len(train_loader), train_acc, test_acc)
            else:
                info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}'.format(
                self._cur_task, epoch+1, self.args['init_epoch'], losses/len(train_loader), train_acc)
            # prog_bar.set_description(info)
            logging.info(info)

    def _update_representation(self, train_loader, test_loader, optimizer, scheduler):
        prog_bar = tqdm(range(self.args["epochs"]))
        for _, epoch in enumerate(prog_bar):
            self.set_network()
            losses = 0.
            losses_clf=0.
            losses_aux=0.
            correct, total = 0, 0
            for i, (_, inputs, targets) in enumerate(train_loader):
                inputs, targets = inputs.to(self._device), targets.to(self._device)

                outputs= self._network(inputs)
                logits,aux_logits=outputs["logits"],outputs["aux_logits"]
                loss_clf=F.cross_entropy(logits,targets)
                aux_targets = targets.clone()
                aux_targets=torch.where(aux_targets-self._known_classes+1.0>0,  aux_targets-self._known_classes+1.0,torch.Tensor([.0]).to(self.args["device"][0]))
                loss_aux=F.cross_entropy(aux_logits,aux_targets.long())
                loss=loss_clf+self.args['alpha_aux']*loss_aux

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                losses += loss.item()
                losses_aux+=loss_aux.item()
                losses_clf+=loss_clf.item()

                _, preds = torch.max(logits, dim=1)
                correct += preds.eq(targets.expand_as(preds)).cpu().sum()
                total += len(targets)

            scheduler.step()
            train_acc = np.around(tensor2numpy(correct)*100 / total, decimals=2)
            if epoch%5==0:
                test_acc = self._compute_accuracy(self._network, test_loader)
                info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux  {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format(
                self._cur_task, epoch+1, self.args["epochs"], losses/len(train_loader),losses_clf/len(train_loader),losses_aux/len(train_loader),train_acc, test_acc)
            else:
                info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux {:.3f}, Train_accy {:.2f}'.format(
                self._cur_task, epoch+1, self.args["epochs"], losses/len(train_loader), losses_clf/len(train_loader),losses_aux/len(train_loader),train_acc)
            prog_bar.set_description(info)
        logging.info(info)
    
    def save_checkpoint(self, test_acc):
        assert self.args['model_name'] == 'finetune'
        checkpoint_name = f"checkpoints/finetune_{self.args['csv_name']}"
        _checkpoint_cpu = copy.deepcopy(self._network)
        if isinstance(_checkpoint_cpu, nn.DataParallel):
            _checkpoint_cpu = _checkpoint_cpu.module
        _checkpoint_cpu.cpu()
        save_dict = {
            "tasks": self._cur_task,
            "convnet": _checkpoint_cpu.convnet.state_dict(),
            "fc":_checkpoint_cpu.fc.state_dict(),
            "test_acc": test_acc
        }
        torch.save(save_dict, "{}_{}.pkl".format(checkpoint_name, self._cur_task))
    
    def _construct_exemplar(self, data_manager, m):
        logging.info("Constructing exemplars...({} per classes)".format(m))
        for class_idx in range(self._known_classes, self._total_classes):
            data, targets, idx_dataset = data_manager.get_dataset(
                np.arange(class_idx, class_idx + 1),
                source="train",
                mode="test",
                ret_data=True,
            )
            idx_loader = DataLoader(
                idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
            )
            vectors, _ = self._extract_vectors(idx_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            class_mean = np.mean(vectors, axis=0)

            # Select
            selected_exemplars = []
            exemplar_vectors = []  # [n, feature_dim]
            for k in range(1, m + 1):
                S = np.sum(
                    exemplar_vectors, axis=0
                )  # [feature_dim] sum of selected exemplars vectors
                mu_p = (vectors + S) / k  # [n, feature_dim] sum to all vectors
                i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1)))
                selected_exemplars.append(
                    np.array(data[i])
                )  # New object to avoid passing by inference
                exemplar_vectors.append(
                    np.array(vectors[i])
                )  # New object to avoid passing by inference

                vectors = np.delete(
                    vectors, i, axis=0
                )  # Remove it to avoid duplicative selection
                data = np.delete(
                    data, i, axis=0
                )  # Remove it to avoid duplicative selection
                
                if len(vectors) == 0:
                    break
            # uniques = np.unique(selected_exemplars, axis=0)
            # print('Unique elements: {}'.format(len(uniques)))
            selected_exemplars = np.array(selected_exemplars)
            # exemplar_targets = np.full(m, class_idx)
            exemplar_targets = np.full(selected_exemplars.shape[0], class_idx)
            self._data_memory = (
                np.concatenate((self._data_memory, selected_exemplars))
                if len(self._data_memory) != 0
                else selected_exemplars
            )
            self._targets_memory = (
                np.concatenate((self._targets_memory, exemplar_targets))
                if len(self._targets_memory) != 0
                else exemplar_targets
            )

            # Exemplar mean
            idx_dataset = data_manager.get_dataset(
                [],
                source="train",
                mode="test",
                appendent=(selected_exemplars, exemplar_targets),
            )
            idx_loader = DataLoader(
                idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
            )
            vectors, _ = self._extract_vectors(idx_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            mean = np.mean(vectors, axis=0)
            mean = mean / np.linalg.norm(mean)

            self._class_means[class_idx, :] = mean