File size: 8,900 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Please note that the current implementation of DER only contains the dynamic expansion process, since masking and pruning are not implemented by the source repo.
import logging
import numpy as np
from tqdm import tqdm
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from models.base import BaseLearner
from utils.inc_net import DERNet, IncrementalNet
from utils.toolkit import count_parameters, target2onehot, tensor2numpy

EPSILON = 1e-8

init_epoch = 100
init_lr = 0.1
init_milestones = [40, 60, 80]
init_lr_decay = 0.1
init_weight_decay = 0.0005


epochs = 80
lrate = 0.1
milestones = [30, 50, 70]
lrate_decay = 0.1
batch_size = 32
weight_decay = 2e-4
num_workers = 8
T = 2


class DER(BaseLearner):
    def __init__(self, args):
        super().__init__(args)
        self._network = DERNet(args, False)

    def after_task(self):
        self._known_classes = self._total_classes
        logging.info("Exemplar size: {}".format(self.exemplar_size))

    def incremental_train(self, data_manager):
        self._cur_task += 1
        self._total_classes = self._known_classes + data_manager.get_task_size(
            self._cur_task
        )
        self._network.update_fc(self._total_classes)
        logging.info(
            "Learning on {}-{}".format(self._known_classes, self._total_classes)
        )

        if self._cur_task > 0:
            for i in range(self._cur_task):
                for p in self._network.convnets[i].parameters():
                    p.requires_grad = False

        logging.info("All params: {}".format(count_parameters(self._network)))
        logging.info(
            "Trainable params: {}".format(count_parameters(self._network, True))
        )

        train_dataset = data_manager.get_dataset(
            np.arange(self._known_classes, self._total_classes),
            source="train",
            mode="train",
            appendent=self._get_memory(),
        )
        self.train_loader = DataLoader(
            train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers
        )
        test_dataset = data_manager.get_dataset(
            np.arange(0, self._total_classes), source="test", mode="test"
        )
        self.test_loader = DataLoader(
            test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
        )

        if len(self._multiple_gpus) > 1:
            self._network = nn.DataParallel(self._network, self._multiple_gpus)
        self._train(self.train_loader, self.test_loader)
        self.build_rehearsal_memory(data_manager, self.samples_per_class)
        if len(self._multiple_gpus) > 1:
            self._network = self._network.module

    def train(self):
        self._network.train()
        if len(self._multiple_gpus) > 1 :
            self._network_module_ptr = self._network.module
        else:
            self._network_module_ptr = self._network
        self._network_module_ptr.convnets[-1].train()
        if self._cur_task >= 1:
            for i in range(self._cur_task):
                self._network_module_ptr.convnets[i].eval()

    def _train(self, train_loader, test_loader):
        self._network.to(self._device)
        if self._cur_task == 0:
            optimizer = optim.SGD(
                filter(lambda p: p.requires_grad, self._network.parameters()),
                momentum=0.9,
                lr=init_lr,
                weight_decay=init_weight_decay,
            )
            scheduler = optim.lr_scheduler.MultiStepLR(
                optimizer=optimizer, milestones=init_milestones, gamma=init_lr_decay
            )
            self._init_train(train_loader, test_loader, optimizer, scheduler)
        else:
            optimizer = optim.SGD(
                filter(lambda p: p.requires_grad, self._network.parameters()),
                lr=lrate,
                momentum=0.9,
                weight_decay=weight_decay,
            )
            scheduler = optim.lr_scheduler.MultiStepLR(
                optimizer=optimizer, milestones=milestones, gamma=lrate_decay
            )
            self._update_representation(train_loader, test_loader, optimizer, scheduler)
            if len(self._multiple_gpus) > 1:
                self._network.module.weight_align(
                    self._total_classes - self._known_classes
                )
            else:
                self._network.weight_align(self._total_classes - self._known_classes)

    def _init_train(self, train_loader, test_loader, optimizer, scheduler):
        prog_bar = tqdm(range(init_epoch))
        for _, epoch in enumerate(prog_bar):
            self.train()
            losses = 0.0
            correct, total = 0, 0
            for i, (_, inputs, targets) in enumerate(train_loader):
                inputs, targets = inputs.to(self._device), targets.to(self._device)
                logits = self._network(inputs)["logits"]

                loss = F.cross_entropy(logits, targets)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                losses += loss.item()

                _, preds = torch.max(logits, dim=1)
                correct += preds.eq(targets.expand_as(preds)).cpu().sum()
                total += len(targets)

            scheduler.step()
            train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2)

            if epoch % 5 == 0:
                test_acc = self._compute_accuracy(self._network, test_loader)
                info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}".format(
                    self._cur_task,
                    epoch + 1,
                    init_epoch,
                    losses / len(train_loader),
                    train_acc,
                    test_acc,
                )
            else:
                info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}".format(
                    self._cur_task,
                    epoch + 1,
                    init_epoch,
                    losses / len(train_loader),
                    train_acc,
                )
            prog_bar.set_description(info)

        logging.info(info)

    def _update_representation(self, train_loader, test_loader, optimizer, scheduler):
        prog_bar = tqdm(range(epochs))
        for _, epoch in enumerate(prog_bar):
            self.train()
            losses = 0.0
            losses_clf = 0.0
            losses_aux = 0.0
            correct, total = 0, 0
            for i, (_, inputs, targets) in enumerate(train_loader):
                inputs, targets = inputs.to(self._device), targets.to(self._device)
                outputs = self._network(inputs)
                logits, aux_logits = outputs["logits"], outputs["aux_logits"]
                loss_clf = F.cross_entropy(logits, targets)
                aux_targets = targets.clone()
                aux_targets = torch.where(
                    aux_targets - self._known_classes + 1 > 0,
                    aux_targets - self._known_classes + 1,
                    torch.tensor([0]).to(self._device),
                )
                loss_aux = F.cross_entropy(aux_logits, aux_targets)
                loss = loss_clf + loss_aux

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                losses += loss.item()
                losses_aux += loss_aux.item()
                losses_clf += loss_clf.item()

                _, preds = torch.max(logits, dim=1)
                correct += preds.eq(targets.expand_as(preds)).cpu().sum()
                total += len(targets)

            scheduler.step()
            train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2)
            if epoch % 5 == 0:
                test_acc = self._compute_accuracy(self._network, test_loader)
                info = "Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}".format(
                    self._cur_task,
                    epoch + 1,
                    epochs,
                    losses / len(train_loader),
                    losses_clf / len(train_loader),
                    losses_aux / len(train_loader),
                    train_acc,
                    test_acc,
                )
            else:
                info = "Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux {:.3f}, Train_accy {:.2f}".format(
                    self._cur_task,
                    epoch + 1,
                    epochs,
                    losses / len(train_loader),
                    losses_clf / len(train_loader),
                    losses_aux / len(train_loader),
                    train_acc,
                )
            prog_bar.set_description(info)
        logging.info(info)