File size: 16,631 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import copy
import logging
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from utils.toolkit import tensor2numpy, accuracy
from scipy.spatial.distance import cdist
import os

EPSILON = 1e-8
batch_size = 64


class BaseLearner(object):
    def __init__(self, args):
        self.args = args
        self._cur_task = -1
        self._known_classes = 0
        self._total_classes = 0
        self.class_list = []
        self._network = None
        self._old_network = None
        self._data_memory, self._targets_memory = np.array([]), np.array([])
        self.topk = 5

        self._memory_size = args["memory_size"]
        self._memory_per_class = args.get("memory_per_class", None)
        self._fixed_memory = args.get("fixed_memory", False)
        self._device = args["device"][0]
        self._multiple_gpus = args["device"]

    @property
    def exemplar_size(self):
        assert len(self._data_memory) == len(
            self._targets_memory
        ), "Exemplar size error."
        return len(self._targets_memory)

    @property
    def samples_per_class(self):
        if self._fixed_memory:
            return self._memory_per_class
        else:
            assert self._total_classes != 0, "Total classes is 0"
            return self._memory_size // self._total_classes

    @property
    def feature_dim(self):
        if isinstance(self._network, nn.DataParallel):
            return self._network.module.feature_dim
        else:
            return self._network.feature_dim

    def build_rehearsal_memory(self, data_manager, per_class, ):
        if self._fixed_memory:
            self._construct_exemplar_unified(data_manager, per_class)
        else:
            self._reduce_exemplar(data_manager, per_class)
            self._construct_exemplar(data_manager, per_class)
    def load_checkpoint(self, filename):
        pass;

    def save_checkpoint(self, filename):
        self._network.cpu()
        save_dict = {
            "tasks": self._cur_task,
            "model_state_dict": self._network.state_dict(),
        }
        torch.save(save_dict, "./{}/{}_{}.pkl".format(filename, self.args['model_name'], self._cur_task))

    def after_task(self):
        pass

    def _evaluate(self, y_pred, y_true, group = 10):
        ret = {}
        grouped = accuracy(y_pred.T[0], y_true, self._known_classes, increment = group)
        ret["grouped"] = grouped
        ret["top1"] = grouped["total"]
        ret["top{}".format(self.topk)] = np.around(
            (y_pred.T == np.tile(y_true, (self.topk, 1))).sum() * 100 / len(y_true),
            decimals=2,
        )

        return ret

    def eval_task(self, data=None, save_conf=False, group = 10, mode = "train"):
        if data is None:
            data = self.test_loader
        y_pred, y_true = self._eval_cnn(data, mode = mode)
        cnn_accy = self._evaluate(y_pred, y_true, group = group)

        if hasattr(self, "_class_means"):
            y_pred, y_true = self._eval_nme(data, self._class_means)
            nme_accy = self._evaluate(y_pred, y_true)
        else:
            nme_accy = None

        if save_conf:
            _pred = y_pred.T[0]
            _pred_path = os.path.join(self.args['logfilename'], "pred.npy")
            _target_path = os.path.join(self.args['logfilename'], "target.npy")
            np.save(_pred_path, _pred)
            np.save(_target_path, y_true)

            _save_dir = os.path.join(f"./results/{self.args['model_name']}/conf_matrix/{self.args['prefix']}")
            os.makedirs(_save_dir, exist_ok=True)
            _save_path = os.path.join(_save_dir, f"{self.args['csv_name']}.csv")
            with open(_save_path, "a+") as f:
                f.write(f"{self.args['model_name']},{_pred_path},{_target_path} \n")

        return cnn_accy, nme_accy

    def incremental_train(self):
        pass

    def _train(self):
        pass

    def _get_memory(self):
        if len(self._data_memory) == 0:
            return None
        else:
            return (self._data_memory, self._targets_memory)

    def _compute_accuracy(self, model, loader):
        model.eval()
        correct, total = 0, 0
        for i, (_, inputs, targets) in enumerate(loader):
            inputs = inputs.to(self._device)
            with torch.no_grad():
                outputs = model(inputs)["logits"]
            predicts = torch.max(outputs, dim=1)[1]
            correct += (predicts.cpu() == targets).sum()
            total += len(targets)

        return np.around(tensor2numpy(correct) * 100 / total, decimals=2)

    def _eval_cnn(self, loader, mode = "train"):
        self._network.eval()
        y_pred, y_true = [], []
        for _, (_, inputs, targets) in enumerate(loader):
            inputs = inputs.to(self._device)
            with torch.no_grad():
                outputs = self._network(inputs)["logits"]
            if self.topk > self._total_classes:
                self.topk = self._total_classes
            predicts = torch.topk(
                outputs, k=self.topk, dim=1, largest=True, sorted=True
            )[
                1
            ]  # [bs, topk]
            refine_predicts = predicts.cpu().numpy()
            if mode == "test":
                refine_predicts = self.class_list[refine_predicts]
            y_pred.append(refine_predicts)
            y_true.append(targets.cpu().numpy())
        return np.concatenate(y_pred), np.concatenate(y_true)  # [N, topk]
    def inference(self, image):
        self._network.eval()
        self._network.to(self._device)
        image = image.to(self._device, dtype=torch.float32)
        with torch.no_grad():
            output = self._network(image)["logits"]
            if self.topk > self._total_classes:
                self.topk = self._total_classes
            predict = torch.topk(
                output, k=self.topk, dim=1, largest=True, sorted=True
            )[1]
            confidents = softmax(output.cpu().numpy())
        if self.class_list is not None:
            self.class_list = np.array(self.class_list)
            predicts = predict.cpu().numpy()
            result = self.class_list[predicts].tolist()
            #result = predicts.tolist()
            result.append([self.label_list[item] for item in result[0]])
            result.append(confidents[0][predicts][0].tolist())
            return result
        elif self.data_manager is not None:
            return self.data_manager.class_list[predict.cpu().numpy()]

        predicts.append([self.label_list[index] for index in predicts[0]])
        return predicts
      
    def _eval_nme(self, loader, class_means):
        self._network.eval()
        vectors, y_true = self._extract_vectors(loader)
        vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T

        dists = cdist(class_means, vectors, "sqeuclidean")  # [nb_classes, N]
        scores = dists.T  # [N, nb_classes], choose the one with the smallest distance

        return np.argsort(scores, axis=1)[:, : self.topk], y_true  # [N, topk]

    def _extract_vectors(self, loader):
        self._network.eval()
        vectors, targets = [], []
        for _, _inputs, _targets in loader:
            _targets = _targets.numpy()
            if isinstance(self._network, nn.DataParallel):
                _vectors = tensor2numpy(
                    self._network.module.extract_vector(_inputs.to(self._device))
                )
            else:
                _vectors = tensor2numpy(
                    self._network.extract_vector(_inputs.to(self._device))
                )

            vectors.append(_vectors)
            targets.append(_targets)
        return np.concatenate(vectors), np.concatenate(targets)

    def _reduce_exemplar(self, data_manager, m):
        logging.info("Reducing exemplars...({} per classes)".format(m))
        dummy_data, dummy_targets = copy.deepcopy(self._data_memory), copy.deepcopy(
            self._targets_memory
        )
        self._class_means = np.zeros((self._total_classes, self.feature_dim))
        self._data_memory, self._targets_memory = np.array([]), np.array([])

        for class_idx in range(self._known_classes):
            mask = np.where(dummy_targets == class_idx)[0]
            dd, dt = dummy_data[mask][:m], dummy_targets[mask][:m]
            self._data_memory = (
                np.concatenate((self._data_memory, dd))
                if len(self._data_memory) != 0
                else dd
            )
            self._targets_memory = (
                np.concatenate((self._targets_memory, dt))
                if len(self._targets_memory) != 0
                else dt
            )

            # Exemplar mean
            idx_dataset = data_manager.get_dataset(
                [], source="train", mode="test", appendent=(dd, dt)
            )
            idx_loader = DataLoader(
                idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
            )
            vectors, _ = self._extract_vectors(idx_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            mean = np.mean(vectors, axis=0)
            mean = mean / np.linalg.norm(mean)

            self._class_means[class_idx, :] = mean

    def _construct_exemplar(self, data_manager, m):
        logging.info("Constructing exemplars...({} per classes)".format(m))
        for class_idx in range(self._known_classes, self._total_classes):
            data, targets, idx_dataset = data_manager.get_dataset(
                np.arange(class_idx, class_idx + 1),
                source="train",
                mode="test",
                ret_data=True,
            )
            idx_loader = DataLoader(
                idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
            )
            vectors, _ = self._extract_vectors(idx_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            class_mean = np.mean(vectors, axis=0)

            # Select
            selected_exemplars = []
            exemplar_vectors = []  # [n, feature_dim]
            for k in range(1, m + 1):
                S = np.sum(
                    exemplar_vectors, axis=0
                )  # [feature_dim] sum of selected exemplars vectors
                mu_p = (vectors + S) / k  # [n, feature_dim] sum to all vectors
                i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1)))
                selected_exemplars.append(
                    np.array(data[i])
                )  # New object to avoid passing by inference
                exemplar_vectors.append(
                    np.array(vectors[i])
                )  # New object to avoid passing by inference

                vectors = np.delete(
                    vectors, i, axis=0
                )  # Remove it to avoid duplicative selection
                data = np.delete(
                    data, i, axis=0
                )  # Remove it to avoid duplicative selection

            # uniques = np.unique(selected_exemplars, axis=0)
            # print('Unique elements: {}'.format(len(uniques)))
            selected_exemplars = np.array(selected_exemplars)
            exemplar_targets = np.full(m, class_idx)
            self._data_memory = (
                np.concatenate((self._data_memory, selected_exemplars))
                if len(self._data_memory) != 0
                else selected_exemplars
            )
            self._targets_memory = (
                np.concatenate((self._targets_memory, exemplar_targets))
                if len(self._targets_memory) != 0
                else exemplar_targets
            )

            # Exemplar mean
            idx_dataset = data_manager.get_dataset(
                [],
                source="train",
                mode="test",
                appendent=(selected_exemplars, exemplar_targets),
            )
            idx_loader = DataLoader(
                idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
            )
            vectors, _ = self._extract_vectors(idx_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            mean = np.mean(vectors, axis=0)
            mean = mean / np.linalg.norm(mean)

            self._class_means[class_idx, :] = mean

    def _construct_exemplar_unified(self, data_manager, m):
        logging.info(
            "Constructing exemplars for new classes...({} per classes)".format(m)
        )
        _class_means = np.zeros((self._total_classes, self.feature_dim))

        # Calculate the means of old classes with newly trained network
        for class_idx in range(self._known_classes):
            mask = np.where(self._targets_memory == class_idx)[0]
            class_data, class_targets = (
                self._data_memory[mask],
                self._targets_memory[mask],
            )

            class_dset = data_manager.get_dataset(
                [], source="train", mode="test", appendent=(class_data, class_targets)
            )
            class_loader = DataLoader(
                class_dset, batch_size=batch_size, shuffle=False, num_workers=4
            )
            vectors, _ = self._extract_vectors(class_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            mean = np.mean(vectors, axis=0)
            mean = mean / np.linalg.norm(mean)

            _class_means[class_idx, :] = mean

        # Construct exemplars for new classes and calculate the means
        for class_idx in range(self._known_classes, self._total_classes):
            data, targets, class_dset = data_manager.get_dataset(
                np.arange(class_idx, class_idx + 1),
                source="train",
                mode="test",
                ret_data=True,
            )
            class_loader = DataLoader(
                class_dset, batch_size=batch_size, shuffle=False, num_workers=4
            )

            vectors, _ = self._extract_vectors(class_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            class_mean = np.mean(vectors, axis=0)

            # Select
            selected_exemplars = []
            exemplar_vectors = []
            for k in range(1, m + 1):
                S = np.sum(
                    exemplar_vectors, axis=0
                )  # [feature_dim] sum of selected exemplars vectors
                mu_p = (vectors + S) / k  # [n, feature_dim] sum to all vectors
                i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1)))

                selected_exemplars.append(
                    np.array(data[i])
                )  # New object to avoid passing by inference
                exemplar_vectors.append(
                    np.array(vectors[i])
                )  # New object to avoid passing by inference

                vectors = np.delete(
                    vectors, i, axis=0
                )  # Remove it to avoid duplicative selection
                data = np.delete(
                    data, i, axis=0
                )  # Remove it to avoid duplicative selection

            selected_exemplars = np.array(selected_exemplars)
            exemplar_targets = np.full(m, class_idx)
            self._data_memory = (
                np.concatenate((self._data_memory, selected_exemplars))
                if len(self._data_memory) != 0
                else selected_exemplars
            )
            self._targets_memory = (
                np.concatenate((self._targets_memory, exemplar_targets))
                if len(self._targets_memory) != 0
                else exemplar_targets
            )

            # Exemplar mean
            exemplar_dset = data_manager.get_dataset(
                [],
                source="train",
                mode="test",
                appendent=(selected_exemplars, exemplar_targets),
            )
            exemplar_loader = DataLoader(
                exemplar_dset, batch_size=batch_size, shuffle=False, num_workers=4
            )
            vectors, _ = self._extract_vectors(exemplar_loader)
            vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
            mean = np.mean(vectors, axis=0)
            mean = mean / np.linalg.norm(mean)

            _class_means[class_idx, :] = mean

        self._class_means = _class_means
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / (e_x.sum(axis=0) + 1e-7) # only difference