File size: 6,311 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
'''
Reference:
https://github.com/khurramjaved96/incremental-learning/blob/autoencoders/model/resnet32.py
https://github.com/hshustc/CVPR19_Incremental_Learning/blob/master/cifar100-class-incremental/modified_resnet_cifar.py
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
# from convs.modified_linear import CosineLinear


class DownsampleA(nn.Module):
    def __init__(self, nIn, nOut, stride):
        super(DownsampleA, self).__init__()
        assert stride == 2
        self.avg = nn.AvgPool2d(kernel_size=1, stride=stride)

    def forward(self, x):
        x = self.avg(x)
        return torch.cat((x, x.mul(0)), 1)


class DownsampleB(nn.Module):
    def __init__(self, nIn, nOut, stride):
        super(DownsampleB, self).__init__()
        self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=stride, padding=0, bias=False)
        self.bn = nn.BatchNorm2d(nOut)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class DownsampleC(nn.Module):
    def __init__(self, nIn, nOut, stride):
        super(DownsampleC, self).__init__()
        assert stride != 1 or nIn != nOut
        self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=stride, padding=0, bias=False)

    def forward(self, x):
        x = self.conv(x)
        return x


class DownsampleD(nn.Module):
    def __init__(self, nIn, nOut, stride):
        super(DownsampleD, self).__init__()
        assert stride == 2
        self.conv = nn.Conv2d(nIn, nOut, kernel_size=2, stride=stride, padding=0, bias=False)
        self.bn = nn.BatchNorm2d(nOut)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class ResNetBasicblock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, last=False):
        super(ResNetBasicblock, self).__init__()

        self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn_a = nn.BatchNorm2d(planes)

        self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn_b = nn.BatchNorm2d(planes)

        self.downsample = downsample
        self.last = last

    def forward(self, x):
        residual = x

        basicblock = self.conv_a(x)
        basicblock = self.bn_a(basicblock)
        basicblock = F.relu(basicblock, inplace=True)

        basicblock = self.conv_b(basicblock)
        basicblock = self.bn_b(basicblock)

        if self.downsample is not None:
            residual = self.downsample(x)

        out = residual + basicblock
        if not self.last:
            out = F.relu(out, inplace=True)

        return out


class CifarResNet(nn.Module):
    """
    ResNet optimized for the Cifar Dataset, as specified in
    https://arxiv.org/abs/1512.03385.pdf
    """

    def __init__(self, block, depth, channels=3):
        super(CifarResNet, self).__init__()

        # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
        assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
        layer_blocks = (depth - 2) // 6

        self.conv_1_3x3 = nn.Conv2d(channels, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn_1 = nn.BatchNorm2d(16)

        self.inplanes = 16
        self.stage_1 = self._make_layer(block, 16, layer_blocks, 1)
        self.stage_2 = self._make_layer(block, 32, layer_blocks, 2)
        self.stage_3 = self._make_layer(block, 64, layer_blocks, 2, last_phase=True)
        self.avgpool = nn.AvgPool2d(8)
        self.out_dim = 64 * block.expansion
        # self.fc = CosineLinear(64*block.expansion, 10)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1, last_phase=False):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = DownsampleB(self.inplanes, planes * block.expansion, stride)  # DownsampleA => DownsampleB

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        if last_phase:
            for i in range(1, blocks-1):
                layers.append(block(self.inplanes, planes))
            layers.append(block(self.inplanes, planes, last=True))
        else:
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv_1_3x3(x)  # [bs, 16, 32, 32]
        x = F.relu(self.bn_1(x), inplace=True)

        x_1 = self.stage_1(x)  # [bs, 16, 32, 32]
        x_2 = self.stage_2(x_1)  # [bs, 32, 16, 16]
        x_3 = self.stage_3(x_2)  # [bs, 64, 8, 8]

        pooled = self.avgpool(x_3)  # [bs, 64, 1, 1]
        features = pooled.view(pooled.size(0), -1)  # [bs, 64]
        # out = self.fc(vector)

        return {
            'fmaps': [x_1, x_2, x_3],
            'features': features
        }

    @property
    def last_conv(self):
        return self.stage_3[-1].conv_b


def resnet20mnist():
    """Constructs a ResNet-20 model for MNIST."""
    model = CifarResNet(ResNetBasicblock, 20, 1)
    return model


def resnet32mnist():
    """Constructs a ResNet-32 model for MNIST."""
    model = CifarResNet(ResNetBasicblock, 32, 1)
    return model


def resnet20():
    """Constructs a ResNet-20 model for CIFAR-10."""
    model = CifarResNet(ResNetBasicblock, 20)
    return model


def resnet32():
    """Constructs a ResNet-32 model for CIFAR-10."""
    model = CifarResNet(ResNetBasicblock, 32)
    return model


def resnet44():
    """Constructs a ResNet-44 model for CIFAR-10."""
    model = CifarResNet(ResNetBasicblock, 44)
    return model


def resnet56():
    """Constructs a ResNet-56 model for CIFAR-10."""
    model = CifarResNet(ResNetBasicblock, 56)
    return model


def resnet110():
    """Constructs a ResNet-110 model for CIFAR-10."""
    model = CifarResNet(ResNetBasicblock, 110)
    return model