File size: 5,888 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
'''
For MEMO implementations of CIFAR-ResNet
Reference:
https://github.com/khurramjaved96/incremental-learning/blob/autoencoders/model/resnet32.py
'''
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

class DownsampleA(nn.Module):
    def __init__(self, nIn, nOut, stride):
        super(DownsampleA, self).__init__()
        assert stride == 2
        self.avg = nn.AvgPool2d(kernel_size=1, stride=stride)

    def forward(self, x):
        x = self.avg(x)
        return torch.cat((x, x.mul(0)), 1)

class ResNetBasicblock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(ResNetBasicblock, self).__init__()

        self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn_a = nn.BatchNorm2d(planes)

        self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn_b = nn.BatchNorm2d(planes)

        self.downsample = downsample

    def forward(self, x):
        residual = x

        basicblock = self.conv_a(x)
        basicblock = self.bn_a(basicblock)
        basicblock = F.relu(basicblock, inplace=True)

        basicblock = self.conv_b(basicblock)
        basicblock = self.bn_b(basicblock)

        if self.downsample is not None:
            residual = self.downsample(x)

        return F.relu(residual + basicblock, inplace=True)



class GeneralizedResNet_cifar(nn.Module):
    def __init__(self, block, depth, channels=3):
        super(GeneralizedResNet_cifar, self).__init__()
        assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
        layer_blocks = (depth - 2) // 6
        self.conv_1_3x3 = nn.Conv2d(channels, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn_1 = nn.BatchNorm2d(16)

        self.inplanes = 16 
        self.stage_1 = self._make_layer(block, 16, layer_blocks, 1)
        self.stage_2 = self._make_layer(block, 32, layer_blocks, 2)

        self.out_dim = 64 * block.expansion

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                # m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                nn.init.kaiming_normal_(m.weight)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = DownsampleA(self.inplanes, planes * block.expansion, stride)

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv_1_3x3(x)  # [bs, 16, 32, 32]
        x = F.relu(self.bn_1(x), inplace=True)

        x_1 = self.stage_1(x)  # [bs, 16, 32, 32]
        x_2 = self.stage_2(x_1)  # [bs, 32, 16, 16]
        return x_2
    
class SpecializedResNet_cifar(nn.Module):
    def __init__(self, block, depth, inplanes=32, feature_dim=64):
        super(SpecializedResNet_cifar, self).__init__()
        self.inplanes = inplanes
        self.feature_dim = feature_dim
        layer_blocks = (depth - 2) // 6
        self.final_stage = self._make_layer(block, 64, layer_blocks, 2)
        self.avgpool = nn.AvgPool2d(8)
    
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                # m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                nn.init.kaiming_normal_(m.weight)
                m.bias.data.zero_()
    
    def _make_layer(self, block, planes, blocks, stride=2):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = DownsampleA(self.inplanes, planes * block.expansion, stride)
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
        return nn.Sequential(*layers)
    
    def forward(self, base_feature_map):
        final_feature_map = self.final_stage(base_feature_map)
        pooled = self.avgpool(final_feature_map)
        features = pooled.view(pooled.size(0), -1) #bs x 64
        return features

#For cifar & MEMO
def get_resnet8_a2fc():
    basenet = GeneralizedResNet_cifar(ResNetBasicblock,8)
    adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,8)
    return basenet,adaptivenet

def get_resnet14_a2fc():
    basenet = GeneralizedResNet_cifar(ResNetBasicblock,14)
    adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,14)
    return basenet,adaptivenet

def get_resnet20_a2fc():
    basenet = GeneralizedResNet_cifar(ResNetBasicblock,20)
    adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,20)
    return basenet,adaptivenet

def get_resnet26_a2fc():
    basenet = GeneralizedResNet_cifar(ResNetBasicblock,26)
    adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,26)
    return basenet,adaptivenet

def get_resnet32_a2fc():
    basenet = GeneralizedResNet_cifar(ResNetBasicblock,32)
    adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,32)
    return basenet,adaptivenet