File size: 5,591 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
'''
Reference:
https://github.com/hshustc/CVPR19_Incremental_Learning/blob/master/cifar100-class-incremental/modified_linear.py
'''
import math
import torch
from torch import nn
from torch.nn import functional as F


class SimpleLinear(nn.Module):
    '''
    Reference:
    https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
    '''
    def __init__(self, in_features, out_features, bias=True):
        super(SimpleLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.kaiming_uniform_(self.weight, nonlinearity='linear')
        nn.init.constant_(self.bias, 0)

    def forward(self, input):
        return {'logits': F.linear(input, self.weight, self.bias)}


class CosineLinear(nn.Module):
    def __init__(self, in_features, out_features, nb_proxy=1, to_reduce=False, sigma=True):
        super(CosineLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features * nb_proxy
        self.nb_proxy = nb_proxy
        self.to_reduce = to_reduce
        self.weight = nn.Parameter(torch.Tensor(self.out_features, in_features))
        if sigma:
            self.sigma = nn.Parameter(torch.Tensor(1))
        else:
            self.register_parameter('sigma', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.sigma is not None:
            self.sigma.data.fill_(1)

    def forward(self, input):
        out = F.linear(F.normalize(input, p=2, dim=1), F.normalize(self.weight, p=2, dim=1))

        if self.to_reduce:
            # Reduce_proxy
            out = reduce_proxies(out, self.nb_proxy)

        if self.sigma is not None:
            out = self.sigma * out

        return {'logits': out}


class SplitCosineLinear(nn.Module):
    def __init__(self, in_features, out_features1, out_features2, nb_proxy=1, sigma=True):
        super(SplitCosineLinear, self).__init__()
        self.in_features = in_features
        self.out_features = (out_features1 + out_features2) * nb_proxy
        self.nb_proxy = nb_proxy
        self.fc1 = CosineLinear(in_features, out_features1, nb_proxy, False, False)
        self.fc2 = CosineLinear(in_features, out_features2, nb_proxy, False, False)
        if sigma:
            self.sigma = nn.Parameter(torch.Tensor(1))
            self.sigma.data.fill_(1)
        else:
            self.register_parameter('sigma', None)

    def forward(self, x):
        out1 = self.fc1(x)
        out2 = self.fc2(x)

        out = torch.cat((out1['logits'], out2['logits']), dim=1)  # concatenate along the channel

        # Reduce_proxy
        out = reduce_proxies(out, self.nb_proxy)

        if self.sigma is not None:
            out = self.sigma * out

        return {
            'old_scores': reduce_proxies(out1['logits'], self.nb_proxy),
            'new_scores': reduce_proxies(out2['logits'], self.nb_proxy),
            'logits': out
        }


def reduce_proxies(out, nb_proxy):
    if nb_proxy == 1:
        return out
    bs = out.shape[0]
    nb_classes = out.shape[1] / nb_proxy
    assert nb_classes.is_integer(), 'Shape error'
    nb_classes = int(nb_classes)

    simi_per_class = out.view(bs, nb_classes, nb_proxy)
    attentions = F.softmax(simi_per_class, dim=-1)

    return (attentions * simi_per_class).sum(-1)


'''
class CosineLinear(nn.Module):
    def __init__(self, in_features, out_features, sigma=True):
        super(CosineLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
        if sigma:
            self.sigma = nn.Parameter(torch.Tensor(1))
        else:
            self.register_parameter('sigma', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.sigma is not None:
            self.sigma.data.fill_(1)

    def forward(self, input):
        out = F.linear(F.normalize(input, p=2, dim=1), F.normalize(self.weight, p=2, dim=1))
        if self.sigma is not None:
            out = self.sigma * out
        return {'logits': out}


class SplitCosineLinear(nn.Module):
    def __init__(self, in_features, out_features1, out_features2, sigma=True):
        super(SplitCosineLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features1 + out_features2
        self.fc1 = CosineLinear(in_features, out_features1, False)
        self.fc2 = CosineLinear(in_features, out_features2, False)
        if sigma:
            self.sigma = nn.Parameter(torch.Tensor(1))
            self.sigma.data.fill_(1)
        else:
            self.register_parameter('sigma', None)

    def forward(self, x):
        out1 = self.fc1(x)
        out2 = self.fc2(x)

        out = torch.cat((out1['logits'], out2['logits']), dim=1)  # concatenate along the channel
        if self.sigma is not None:
            out = self.sigma * out

        return {
            'old_scores': out1['logits'],
            'new_scores': out2['logits'],
            'logits': out
        }
'''