Spaces:
Running
Running
File size: 11,060 Bytes
8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 1d75c5c 8c36ac7 7b6b6f7 1f95369 8c36ac7 1f95369 8c36ac7 1f95369 8c36ac7 1f95369 1d75c5c 1f95369 1d75c5c 1f95369 1d75c5c 7b6b6f7 1d75c5c 7b6b6f7 1d75c5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
import numpy as np
from matplotlib import pyplot as plt
from torch import nn
from transformers import SegformerForSemanticSegmentation
import sys
import io
import pdb
###################
# Setup label names
target_list = ['Crack', 'ACrack', 'Wetspot', 'Efflorescence', 'Rust', 'Rockpocket', 'Hollowareas', 'Cavity',
'Spalling', 'Graffiti', 'Weathering', 'Restformwork', 'ExposedRebars',
'Bearing', 'EJoint', 'Drainage', 'PEquipment', 'JTape', 'WConccor']
target_list_all = ["All"] + target_list
classes, nclasses = target_list, len(target_list)
label2id = dict(zip(classes, range(nclasses)))
id2label = dict(zip(range(nclasses), classes))
############
# Load model
device = torch.device('cpu')
segformer = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b1",
id2label=id2label,
label2id=label2id)
# SegModel
class SegModel(nn.Module):
def __init__(self, segformer):
super(SegModel, self).__init__()
self.segformer = segformer
self.upsample = nn.Upsample(scale_factor=4, mode='nearest')
def forward(self, x):
return self.upsample(self.segformer(x).logits)
model = SegModel(segformer)
path = "runs/2023-08-31_rich-paper-12/best_model_cpu.pth"
print(f"Load Segformer weights from {path}")
#model = model.load_state_dict(torch.load(path, map_location=device))
model = torch.load(path)
model.eval()
##################
# Image preprocess
##################
to_tensor = transforms.ToTensor()
to_array = transforms.ToPILImage()
resize = transforms.Resize((512, 512))
resize_small = transforms.Resize((369,369))
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
def process_pil(img):
img = to_tensor(img)
img = resize(img)
img = normalize(img)
return img
# the background of the image
def resize_pil(img):
img = to_tensor(img)
img = resize_small(img)
img = to_array(img)
return img
# combine the foreground (mask_all) and background (original image) to create one image
def transparent(fg, bg, alpha_factor):
foreground = np.array(fg)
background = np.array(bg)
background = Image.fromarray(bg)
foreground = Image.fromarray(fg)
new_alpha_factor = int(255*alpha_factor)
foreground.putalpha(new_alpha_factor)
background.paste(foreground, (0, 0), foreground)
return background
def show_img(all_imgs, dropdown, bg, alpha_factor):
idx = target_list_all.index(dropdown)
fg= all_imgs[idx]["name"]
foreground = Image.open(fg)
background = np.array(bg)
background = Image.fromarray(bg)
new_alpha_factor = int(255*alpha_factor)
foreground.putalpha(new_alpha_factor)
background.paste(foreground, (0, 0), foreground)
return background
###########
# Inference
def inference(img, alpha_factor):
background = resize_pil(img)
img = process_pil(img)
mask = model(img.unsqueeze(0)) # we need a batch, hence we introduce an extra dimenation at position 0 (unsqueeze)
mask = mask[0]
# Get probability values (logits to probs)
mask_probs = torch.sigmoid(mask)
mask_probs = mask_probs.detach().numpy()
mask_probs.shape
# Make binary mask
THRESHOLD = 0.5
mask_preds = mask_probs > THRESHOLD
# All combined
mask_all = mask_preds.sum(axis=0)
mask_all = np.expand_dims(mask_all, axis=0)
mask_all.shape
# Concat all combined with normal preds
mask_preds = np.concatenate((mask_all, mask_preds),axis=0)
labs = ["ALL"] + target_list
fig, axes = plt.subplots(5, 4, figsize = (10,10))
# save all mask_preds in all_mask
all_masks = []
for i, ax in enumerate(axes.flat):
label = labs[i]
all_masks.append(mask_preds[i])
ax.imshow(mask_preds[i])
ax.set_title(label)
plt.tight_layout()
# plt to PIL
img_buf = io.BytesIO()
fig.savefig(img_buf, format='png')
im = Image.open(img_buf)
# Saved all masks combined with unvisible xaxis und yaxis and without a white
# background.
all_images = []
for i in range(len(all_masks)):
plt.figure()
fig = plt.imshow(all_masks[i])
plt.axis('off')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
img_buf = io.BytesIO()
plt.savefig(img_buf, bbox_inches='tight', pad_inches = 0, format='png')
all_images.append(Image.open(img_buf))
return im, all_images, background
examples=[
["assets/dacl10k_v2_validation_0026.jpg", "dacl10k_v2_validation_0026.jpg"],
["assets/dacl10k_v2_validation_0037.jpg", "dacl10k_v2_validation_0037.jpg"],
["assets/dacl10k_v2_validation_0053.jpg", "dacl10k_v2_validation_0053.jpg"],
["assets/dacl10k_v2_validation_0068.jpg", "dacl10k_v2_validation_0068.jpg"],
["assets/dacl10k_v2_validation_0153.jpg", "dacl10k_v2_validation_0153.jpg"],
["assets/dacl10k_v2_validation_0263.jpg", "dacl10k_v2_validation_0263.jpg"],
["assets/dacl10k_v2_validation_0336.jpg", "dacl10k_v2_validation_0336.jpg"],
["assets/dacl10k_v2_validation_0500.jpg", "dacl10k_v2_validation_0500.jpg"],
["assets/dacl10k_v2_validation_0549.jpg", "dacl10k_v2_validation_0549.jpg"],
["assets/dacl10k_v2_validation_0609.jpg", "dacl10k_v2_validation_0609.jpg"]
]
title = "dacl-challenge @ WACV2024"
description = """
<p style="text-align:center">
<h1>dacl-challenge @ WACV2024</h1>
</p>
<b>
<p style="text-align:center">
<a href='https://twitter.com/dacl_ai' target='_blank'>Twitter</a><a href='https://x.com/dacl_ai' target='_blank'>/X</a> |
<a href='https://wacv2024.thecvf.com/workshops/' target='_blank'>WACV2024</a> |
<a href='https://arxiv.org/abs/2309.00460' target='_blank'>arXiv</a> |
<a href='https://github.com/phiyodr/dacl10k-toolkit' target='_blank'>Python Toolkit</a> |
<a href='https://try.fiftyone.ai/datasets/dacl10k/samples' target='_blank'>voxel51.com</a> |
<a href='https://eval.ai/web/challenges/challenge-page/2130/overview' target='_blank'>eval.ai</a> |
<a href='https://dacl.ai/workshop.html' target='_blank'>dacl.ai workshop page</a>
</p>
<p></p>
<p>π The challenge uses the dacl10k dataset, which stands for <i>damage classification 10k images</i> and is a <b>multi-label semantic segmentation dataset</b> for 19 classes (13 damages and 6 objects) present on bridges.</p>
<p></p>
<p>π The dataset is used in the <a href='https://eval.ai/web/challenges/challenge-page/2130/overview' target='_blank'>dacl-challenge</a> associated with the "<a href='https://dacl.ai/workshop' target='_blank'>1st Workshop on Vision-Based Structural Inspections in Civil Engineering</a>" at <a href='https://wacv2024.thecvf.com/workshops/' target='_blank'>WACV2024</a>.</p>
<p></p>
</b>
<p>Civil engineering structures such as power plants, sewers, and bridges form essential components of the public infrastructure. It is mandatory to keep these structures in a safe and operational state. In order to ensure this, they are frequently inspected where the current recognition and documentation of defects and building components is mostly carried out manually. A failure of individual structures results in enormous costs. For example, the economic costs caused by the closure of a bridge due to congestion is many times the cost of the bridge itself and its maintenance.</p>
<p></p>
<p>Recent advancements in hardware and software offer great potential for increasing the quality, traceability, and efficiency of the structural inspection process. In particular, methods from the field of computer vision play an important role. The new techniques support the inspection engineer at the building site, raising quality and efficiency of the inspection. There is a high demand worldwide for the automation of structural inspections in the areas of building construction, bridge construction, tunnel construction, sewage plants, and other critical infrastructures.</p>
<p></p>
<p>In the β<a href='https://dacl.ai/workshop' target='_blank'>1st Workshop on Vision-Based Structural Inspections in Civil Engineering</a>,β approaches utilizing computer vision for analyzing and assessing civil engineering structures will be explored. The workshop will provide a platform for experts from both the academic and application community. The core of the workshop is the β<a href='https://eval.ai/web/challenges/challenge-page/2130/overview' target='_blank'>dacl-challenge</a>,β which aims to find the best models for recognizing bridge defects and bridge components by means of semantic segmentation. The challenge is based on the β<b>dacl10k</b>β dataset, a novel, real-world, large-scale benchmark for multi-label semantic segmentation that distinguishes between <b>13 defect types</b> and <b>six building components</b>. The workshop will take place at the <a href='https://wacv2024.thecvf.com/workshops/' target='_blank'>IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2024</a>.</p>
<p></p>
<p>Details:
<ul>
<li>Model: <a href='https://huggingface.co/nvidia/mit-b1' target='_blank'>SegFormer mit-b1</a>, trained on resized 512x512 images for (only) 10 epochs.</li>
<li>Label description of dacl10k dataset: "A.3. Class descriptions" in <a href='https://arxiv.org/pdf/2309.00460.pdf' target='_blank'>J. Flotzinger, P.J. RΓΆsch, T. Braml: "dacl10k: Benchmark for Semantic Bridge Damage Segmentation".</a></li>
</ul>
<p></p>
<p>Workflow:
<ul>
<li>Upload an image or select one from "Examples". </li>
<li>Then click "1) Generate Masks"</li>
<li>Select an damage or object type in "Select Label" and choose an "Alpha Factor" for transparancy.</li>
<li>Then click "2) Generate Transparent Mask (with Alpha Factor)"</li>
</ul>
"""
article = "<p style='text-align: center'><a href='https://github.com/phiyodr/dacl10k-toolkit' target='_blank'>Github Repo</a></p>"
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(description)
with gr.Row():
input_img = gr.inputs.Image(type="pil", label="Original Image")
gr.Examples(examples=examples, inputs=[input_img])
with gr.Row():
img = gr.outputs.Image(type="pil", label="All Masks")
transparent_img = gr.outputs.Image(type="pil", label="Transparent Image")
with gr.Row():
dropdown = gr.Dropdown(choices=target_list_all, label="Select Label", value="All")
slider = gr.Slider(minimum=0, maximum=1, value=0.4, label="Alpha Factor")
all_masks = gr.Gallery(visible=False)
background = gr.Image(visible=False)
generate_mask_slider = gr.Button("1) Generate Masks")
generate_mask_slider.click(inference, inputs=[input_img], outputs=[img, all_masks, background])
submit_transparent_img = gr.Button("2) Generate Transparent Mask (with Alpha Factor)")
submit_transparent_img.click(show_img, inputs=[all_masks, dropdown, background, slider], outputs=[transparent_img])
app.launch() |