Spaces:
Sleeping
Sleeping
File size: 15,654 Bytes
755ac75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
.
├── streamlit_app.py
└── utils.py
1 directory, 2 files
# File: ./streamlit_app.py
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime, time, date
from typing import List, Dict, Any, Tuple
from utils import generate_random_data, calculate_percentile, evaluate_alarm_state, aggregate_data
# Constants
HARD_CODED_DATE = date(2024, 7, 26)
def main():
st.title("Streamlit App for Data Generation and Analysis")
# Initialize session state
initialize_session_state()
# Section 1 - Generate random data
st.header("Section 1 - Generate Random Data")
generate_data_form()
if not st.session_state.df.empty:
display_dataframe("Raw Event Data", st.session_state.df)
# Section 2 - Calculate Percentile
st.header("Section 2 - Calculate Percentile")
percentile_form()
if not st.session_state.percentile_df.empty:
display_dataframe("Aggregated Summary Data", st.session_state.percentile_df)
# Section 3 - Summary Data Aggregated by Period
st.header("Section 3 - Summary Data Aggregated by Period")
summary_by_period_form()
if not st.session_state.summary_by_period_df.empty:
display_dataframe("Summary Data Aggregated by Period", st.session_state.summary_by_period_df)
# Section 4 - Evaluate Alarm State
st.header("Section 4 - Evaluate Alarm State")
alarm_state_form()
if not st.session_state.alarm_state_df.empty:
plot_time_series(st.session_state.summary_by_period_df, st.session_state.threshold_input, st.session_state.alarm_condition_input, st.session_state.evaluation_range_input)
display_alarm_state_evaluation(st.session_state.alarm_state_df)
display_key_tables()
def initialize_session_state() -> None:
if 'df' not in st.session_state:
st.session_state.df = pd.DataFrame()
if 'percentile_df' not in st.session_state:
st.session_state.percentile_df = pd.DataFrame()
if 'summary_by_period_df' not in st.session_state:
st.session_state.summary_by_period_df = pd.DataFrame()
if 'alarm_state_df' not in st.session_state:
st.session_state.alarm_state_df = pd.DataFrame()
def generate_data_form() -> None:
with st.form(key='generate_data_form'):
start_time_input = st.time_input("Start Time", time(12, 0), help="Select the start time for generating random data.")
end_time_input = st.time_input("End Time", time(12, 30), help="Select the end time for generating random data.")
count_input = st.slider("Count", min_value=1, max_value=200, value=60, help="Specify the number of data points to generate.")
response_time_range_input = st.slider("Response Time Range (ms)", min_value=50, max_value=300, value=(100, 250), help="Select the range of response times in milliseconds.")
null_percentage_input = st.slider("Null Percentage", min_value=0.0, max_value=1.0, value=0.5, help="Select the percentage of null values in the generated data.")
submit_button = st.form_submit_button(label='Generate Data')
if submit_button:
st.session_state.df = generate_random_data(
date=HARD_CODED_DATE,
start_time=start_time_input,
end_time=end_time_input,
count=count_input,
response_time_range=response_time_range_input,
null_percentage=null_percentage_input
)
def percentile_form() -> None:
freq_input = st.selectbox("Period (bin)", ['1min', '5min', '15min'], key='freq_input', help="Select the frequency for aggregating the data.")
percentile_input = st.slider("Percentile", min_value=0.0, max_value=1.0, value=0.95, key='percentile_input', help="Select the percentile for calculating the aggregated summary data.")
if not st.session_state.df.empty:
st.session_state.percentile_df = calculate_percentile(st.session_state.df, freq_input, percentile_input)
def summary_by_period_form() -> None:
period_length_input = st.selectbox("Period Length", ['1min', '5min', '15min'], key='period_length_input', help="Select the period length for aggregating the summary data.")
if not st.session_state.df.empty:
st.session_state.summary_by_period_df = aggregate_data(st.session_state.df, period_length_input)
def alarm_state_form() -> None:
threshold_input = st.number_input("Threshold (ms)", min_value=50, max_value=300, value=150, key='threshold_input', help="Specify the threshold value for evaluating the alarm state.")
datapoints_to_alarm_input = st.number_input("Datapoints to Alarm", min_value=1, value=3, key='datapoints_to_alarm_input', help="Specify the number of data points required to trigger an alarm.")
evaluation_range_input = st.number_input("Evaluation Range", min_value=1, value=5, key='evaluation_range_input', help="Specify the range of data points to evaluate for alarm state.")
aggregation_function_input = st.selectbox(
"Aggregation Function",
['p50', 'p95', 'p99', 'max', 'min', 'average'],
key='aggregation_function_input',
help="Select the aggregation function for visualizing the data and computing alarms."
)
alarm_condition_input = st.selectbox(
"Alarm Condition",
['>', '>=', '<', '<='],
key='alarm_condition_input',
help="Select the condition for evaluating the alarm state."
)
if not st.session_state.summary_by_period_df.empty:
st.session_state.alarm_state_df = evaluate_alarm_state(
summary_df=st.session_state.summary_by_period_df,
threshold=threshold_input,
datapoints_to_alarm=datapoints_to_alarm_input,
evaluation_range=evaluation_range_input,
aggregation_function=aggregation_function_input,
alarm_condition=alarm_condition_input
)
def display_dataframe(title: str, df: pd.DataFrame) -> None:
st.write(title)
st.dataframe(df)
def plot_time_series(df: pd.DataFrame, threshold: int, alarm_condition: str, evaluation_range: int) -> None:
timestamps = df['Timestamp']
response_times = df[st.session_state.aggregation_function_input]
segments = []
current_segment = {'timestamps': [], 'values': []}
for timestamp, value in zip(timestamps, response_times):
if pd.isna(value):
if current_segment['timestamps']:
segments.append(current_segment)
current_segment = {'timestamps': [], 'values': []}
else:
current_segment['timestamps'].append(timestamp)
current_segment['values'].append(value)
if current_segment['timestamps']:
segments.append(current_segment)
fig, ax1 = plt.subplots()
color = 'tab:blue'
ax1.set_xlabel('Timestamp')
ax1.set_ylabel('Response Time (ms)', color=color)
for segment in segments:
ax1.plot(segment['timestamps'], segment['values'], color=color, linewidth=0.5)
ax1.scatter(segment['timestamps'], segment['values'], color=color, s=10)
line_style = '--' if alarm_condition in ['<', '>'] else '-'
ax1.axhline(y=threshold, color='r', linestyle=line_style, linewidth=0.8, label='Threshold')
ax1.tick_params(axis='y', labelcolor=color)
if alarm_condition in ['<=', '<']:
ax1.fill_between(timestamps, 0, threshold, color='pink', alpha=0.3)
else:
ax1.fill_between(timestamps, threshold, response_times.max(), color='pink', alpha=0.3)
period_indices = range(len(df))
ax2 = ax1.twiny()
ax2.set_xticks(period_indices)
ax2.set_xticklabels(period_indices, fontsize=8)
ax2.set_xlabel('Time Periods', fontsize=8)
ax2.xaxis.set_tick_params(width=0.5)
for idx in period_indices:
if idx % evaluation_range == 0:
ax1.axvline(x=df['Timestamp'].iloc[idx], color='green', linestyle='-', alpha=0.3)
max_value = max(filter(lambda x: x is not None, df[st.session_state.aggregation_function_input]))
ax1.text(df['Timestamp'].iloc[idx], max_value * 0.95, f"[{idx // evaluation_range}]", rotation=90, verticalalignment='bottom', color='grey', alpha=0.7, fontsize=8)
else:
ax1.axvline(x=df['Timestamp'].iloc[idx], color='grey', linestyle='--', alpha=0.3)
ax1.annotate('Alarm threshold', xy=(0.98, threshold), xycoords=('axes fraction', 'data'), ha='right', va='bottom', fontsize=8, color='red', backgroundcolor='none')
fig.tight_layout()
st.pyplot(fig)
def display_alarm_state_evaluation(df: pd.DataFrame) -> None:
st.write("Alarm State Evaluation")
st.dataframe(df)
def display_key_tables() -> None:
st.write("### Key")
# Symbols
st.write("#### Symbols")
symbol_data = {
"Symbol": ["X", "-", "0"],
"Meaning": [
"Breaching data point: This data point exceeds the threshold.",
"Missing data point: This data point is missing or not reported.",
"Non-breaching data point: This data point is within the threshold."
]
}
symbol_df = pd.DataFrame(symbol_data)
st.table(symbol_df)
# Columns
st.write("#### Columns")
column_data = {
"Column": ["MISSING", "IGNORE", "BREACHING", "NOT BREACHING"],
"Meaning": [
"Action to take when all data points are missing. Possible values: INSUFFICIENT_DATA, Retain current state, ALARM, OK.",
"Action to take when data points are missing but ignored. Possible values: Retain current state, ALARM, OK.",
"Action to take when missing data points are treated as breaching. Possible values: ALARM, OK.",
"Action to take when missing data points are treated as not breaching. Possible values: ALARM, OK."
]
}
column_df = pd.DataFrame(column_data)
st.table(column_df)
# States
st.write("#### States")
state_data = {
"State": ["ALARM", "OK", "Retain current state", "INSUFFICIENT_DATA"],
"Description": [
"Alarm state is triggered.",
"Everything is within the threshold.",
"The current alarm state is maintained.",
"Not enough data to make a determination."
]
}
state_df = pd.DataFrame(state_data)
st.table(state_df)
if __name__ == "__main__":
main()
# File: ./utils.py
import random
from datetime import datetime, timedelta, date, time
import pandas as pd
import numpy as np
from typing import List, Iterator, Dict, Any, Optional
def generate_random_data(
date: date,
start_time: time,
end_time: time,
count: int,
response_time_range: (int, int),
null_percentage: float
) -> pd.DataFrame:
start_datetime: datetime = datetime.combine(date, start_time)
end_datetime: datetime = datetime.combine(date, end_time)
random_timestamps: List[datetime] = [
start_datetime + timedelta(seconds=random.randint(0, int((end_datetime - start_datetime).total_seconds())))
for _ in range(count)
]
random_timestamps.sort()
random_response_times: List[Optional[int]] = [
random.randint(response_time_range[0], response_time_range[1]) for _ in range(count)
]
null_count: int = int(null_percentage * count)
null_indices: List[int] = random.sample(range(count), null_count)
for idx in null_indices:
random_response_times[idx] = None
data: Dict[str, Any] = {
'Timestamp': random_timestamps,
'ResponseTime(ms)': random_response_times
}
df: pd.DataFrame = pd.DataFrame(data)
return df
def calculate_percentile(
df: pd.DataFrame,
freq: str,
percentile: float
) -> pd.DataFrame:
percentile_df: pd.DataFrame = df.groupby(pd.Grouper(key='Timestamp', freq=freq))["ResponseTime(ms)"]\
.quantile(percentile).reset_index(name=f"p{int(percentile * 100)}_ResponseTime(ms)")
percentile_df.replace(to_replace=np.nan, value=None, inplace=True)
return percentile_df
def aggregate_data(
df: pd.DataFrame,
period_length: str
) -> pd.DataFrame:
aggregation_funcs = {
'p50': lambda x: np.percentile(x.dropna(), 50),
'p95': lambda x: np.percentile(x.dropna(), 95),
'p99': lambda x: np.percentile(x.dropna(), 99),
'max': lambda x: np.max(x.dropna()),
'min': lambda x: np.min(x.dropna()),
'average': lambda x: np.mean(x.dropna())
}
summary_df = df.groupby(pd.Grouper(key='Timestamp', freq=period_length)).agg(
p50=('ResponseTime(ms)', aggregation_funcs['p50']),
p95=('ResponseTime(ms)', aggregation_funcs['p95']),
p99=('ResponseTime(ms)', aggregation_funcs['p99']),
max=('ResponseTime(ms)', aggregation_funcs['max']),
min=('ResponseTime(ms)', aggregation_funcs['min']),
average=('ResponseTime(ms)', aggregation_funcs['average']),
).reset_index()
return summary_df
def chunk_list(input_list: List[Any], size: int = 3) -> Iterator[List[Any]]:
while input_list:
chunk: List[Any] = input_list[:size]
yield chunk
input_list = input_list[size:]
def evaluate_alarm_state(
summary_df: pd.DataFrame,
threshold: int,
datapoints_to_alarm: int,
evaluation_range: int,
aggregation_function: str,
alarm_condition: str
) -> pd.DataFrame:
data_points: List[Optional[float]] = list(summary_df[aggregation_function].values)
data_table_dict: Dict[str, List[Any]] = {
"DataPoints": [],
"# of data points that must be filled": [],
"MISSING": [],
"IGNORE": [],
"BREACHING": [],
"NOT BREACHING": []
}
def check_condition(value, threshold, condition):
if condition == '>':
return value > threshold
elif condition == '>=':
return value >= threshold
elif condition == '<':
return value < threshold
elif condition == '<=':
return value <= threshold
for chunk in chunk_list(input_list=data_points, size=evaluation_range):
data_point_repr: str = ''
num_dp_that_must_be_filled: int = 0
for dp in chunk:
if dp is None:
data_point_repr += '-'
elif check_condition(dp, threshold, alarm_condition):
data_point_repr += 'X'
else:
data_point_repr += '0'
if len(chunk) < evaluation_range:
data_point_repr += '-' * (evaluation_range - len(chunk))
if data_point_repr.count('-') > (evaluation_range - datapoints_to_alarm):
num_dp_that_must_be_filled = datapoints_to_alarm - sum([data_point_repr.count('0'), data_point_repr.count('X')])
data_table_dict["DataPoints"].append(data_point_repr)
data_table_dict["# of data points that must be filled"].append(num_dp_that_must_be_filled)
if num_dp_that_must_be_filled > 0:
data_table_dict["MISSING"].append("INSUFFICIENT_DATA" if data_point_repr.count('-') == evaluation_range else "Retain current state")
data_table_dict["IGNORE"].append("Retain current state")
data_table_dict["BREACHING"].append("ALARM")
data_table_dict["NOT BREACHING"].append("OK")
else:
data_table_dict["MISSING"].append("OK")
data_table_dict["IGNORE"].append("Retain current state")
data_table_dict["BREACHING"].append("ALARM" if 'X' * datapoints_to_alarm in data_point_repr else "OK")
data_table_dict["NOT BREACHING"].append("ALARM" if '0' * datapoints_to_alarm not in data_point_repr else "OK")
return pd.DataFrame(data_table_dict)
|