Spaces:
Running
Running
File size: 5,441 Bytes
9dcb348 ee2b517 3479f48 3a76146 f8bdf54 4249eba 9ede36f d41eec1 49b8bf0 46773aa 3a76146 704aa87 3a76146 c51abf0 3479f48 3a76146 70f3cdd 489248f 3a76146 aa43f32 3479f48 3a76146 49b8bf0 1375e49 22bfac3 49b8bf0 1375e49 49b8bf0 1375e49 153ec16 3479f48 c51abf0 3479f48 c51abf0 3479f48 1375e49 3479f48 1375e49 8d497b1 1375e49 961e9fd 1375e49 9dcb348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
from io import StringIO
from model import DecoderTransformer, Tokenizer
from huggingface_hub import hf_hub_download
import torch
import chess
import chess.svg
import chess.pgn
from svglib.svglib import svg2rlg
from reportlab.graphics import renderPM
from PIL import Image
import os
from uuid import uuid4
vocab_size = 36
n_embed = 384
context_size = 256
n_layer = 6
n_head = 6
dropout = 0.2
device = 'cpu'
model_id = "philipp-zettl/chessPT"
model_path = hf_hub_download(repo_id=model_id, filename="chessPT-v0.5.pth")
tokenizer_path = hf_hub_download(repo_id=model_id, filename="tokenizer-v0.5.json")
model = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.to(device)
tokenizer = Tokenizer.from_pretrained(tokenizer_path)
invalid_move_plot = Image.open('./invalid_move.png')
def gen_image_from_svg(img, filename):
with open(filename + '.svg', 'w') as f:
f.write(img)
drawing = svg2rlg(filename + '.svg')
renderPM.drawToFile(drawing, f"{filename}.png", fmt="PNG")
plot = Image.open(f'{filename}.png')
os.remove(f'{filename}.png')
os.remove(f'{filename}.svg')
return plot
def get_board(pgn):
pgn_str = StringIO(pgn)
try:
game = chess.pgn.read_game(pgn_str)
board = game.board()
for move in game.mainline_moves():
board.push(move)
except Exception as e:
if 'illegal san' in str(e):
return None
return board
def gen_board_image(pgn):
board = get_board(pgn)
return chess.svg.board(board)
def gen_move(pgn):
model_input = torch.tensor(tokenizer.encode(pgn), dtype=torch.long, device=device).view((1, len(pgn)))
is_invalid = True
board = get_board(pgn)
while is_invalid:
new_pgn = tokenizer.decode(model.generate(model_input, max_new_tokens=4, context_size=context_size, temperature=0.2)[0].tolist())
try:
print(f'checking {new_pgn}')
mv = new_pgn[len(pgn):].split(' ')[0]
new_pgn = pgn.rstrip() + f' {mv}'
is_invalid = get_board(new_pgn) is None
except Exception:
is_invalid = True
print(f'For {pgn} invalid "{new_pgn[len(pgn):].split(" ")[0]}" {new_pgn}')
#print(mov in board.legal_moves)
return new_pgn
def generate(prompt):
model_input = torch.tensor(tokenizer.encode(prompt), dtype=torch.long, device=device).view((1, len(prompt)))
pgn = tokenizer.decode(model.generate(model_input, max_new_tokens=4, context_size=context_size, temperature=0.2)[0].tolist())
img = gen_board_image(pgn)
filename = f'./moves-{str(uuid4())}'
plot = gen_image_from_svg(img, filename)
return pgn, plot
with gr.Blocks() as demo:
gr.Markdown("""
# ChessPT
Welcome to ChessPT.
The **C**hess-**P**re-trained-**T**ransformer.
The rules are simple:
- "Interactive": Play a game against the model
- "Next turn prediction": provide a PGN string of your current game, the model will predict the next token
""")
def manual():
with gr.Tab("Next turn prediction"):
prompt = gr.Text(label="PGN")
output = gr.Text(label="Next turn", interactive=False)
img = gr.Image()
submit = gr.Button("Submit")
submit.click(generate, [prompt], [output, img])
gr.Examples(
[
["1. e4", ],
["1. e4 g6 2."],
],
inputs=[prompt],
outputs=[output, img],
fn=generate
)
def interactive():
with gr.Tab("Interactive"):
color = gr.Dropdown(["white", "black"], value='white', label="Chose a color")
start_button = gr.Button("Start Game")
def start_game(c):
pgn = '1. '
if c == 'black':
pgn = gen_move(pgn)
img = gen_board_image(pgn)
fn = 'foo'
return gen_image_from_svg(img, fn), pgn, 1
state = gr.Text(label='PGN', value='', interactive=False)
game = gr.Image()
move_counter = gr.State(value=1)
start_button.click(
start_game,
inputs=[color],
outputs=[game, state, move_counter]
)
next_move = gr.Text(label='Next move')
gen_next_move_button = gr.Button("Submit")
def gen_next_move(pgn, new_move, move_ctr, c):
pgn += (' ' if c == 'black' else '') + new_move.strip() + ' '
if c == 'black':
move_ctr += 1
pgn = f'{pgn.rstrip()} {move_ctr}. '
print(f'gen for {pgn}')
pgn = gen_move(pgn)
print(f'got {pgn}')
img = gen_board_image(pgn)
if c == 'white':
move_ctr += 1
pgn = f'{pgn.rstrip()} {move_ctr}. '
return gen_image_from_svg(img, 'foo-bar'), pgn, move_ctr
gen_next_move_button.click(
gen_next_move,
inputs=[state, next_move, move_counter, color],
outputs=[game, state, move_counter]
)
interactive()
manual()
demo.launch()
|