File size: 9,373 Bytes
06ecff4
 
 
 
 
 
 
 
 
 
 
56f14f1
06ecff4
 
190bb2a
83498a5
 
 
 
ff4edf1
7cc1c23
ff4edf1
06ecff4
 
 
 
 
83498a5
06ecff4
 
 
 
83498a5
 
06ecff4
83498a5
06ecff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83498a5
 
06ecff4
 
 
 
 
 
 
 
 
 
83498a5
06ecff4
 
 
 
 
83498a5
 
 
 
06ecff4
 
 
 
 
 
83498a5
 
06ecff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83498a5
 
06ecff4
 
83498a5
 
ff4edf1
83498a5
 
 
 
 
ff4edf1
83498a5
 
ff4edf1
83498a5
ff4edf1
 
83498a5
ff4edf1
 
 
 
83498a5
 
ff4edf1
 
83498a5
ff4edf1
7943ceb
83498a5
 
 
7943ceb
83498a5
7cc1c23
83498a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4edf1
83498a5
 
 
 
 
ff4edf1
 
83498a5
 
 
 
06ecff4
 
 
 
83498a5
 
 
06ecff4
83498a5
06ecff4
83498a5
06ecff4
 
 
 
 
 
 
 
 
 
83498a5
06ecff4
 
 
83498a5
d5adc26
06ecff4
 
 
83498a5
06ecff4
 
 
 
 
 
 
 
 
 
d5adc26
06ecff4
 
83498a5
06ecff4
 
 
 
 
8306f26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import speech_recognition as sr
from gtts import gTTS
import gradio as gr
from io import BytesIO
import numpy as np
from dataclasses import dataclass, field
import time
import traceback
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
import torch
from huggingface_hub import login
import os
from PIL import Image
from threading import Thread
tk = os.environ.get("HF_TOKEN")
#login(tk)
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,torch_dtype=torch.bfloat16).to("cpu")
processor = AutoProcessor.from_pretrained(ckpt)
r = sr.Recognizer()

@dataclass
class AppState:
    stream: np.ndarray | None = None
    image: dict = field(default_factory=dict)
    sampling_rate: int = 0
    pause_detected: bool = False
    started_talking: bool =  False
    stopped: bool = False
    message: dict = field(default_factory=dict)
    history: list = field(default_factory=list)
    conversation: list = field(default_factory=list)
    textout: str = ""

def run_vad(ori_audio, sr):
    _st = time.time()
    try:
        audio = ori_audio
        audio = audio.astype(np.float32) / 32768.0
        sampling_rate = 16000
        if sr != sampling_rate:
            audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
        vad_parameters = {}
        vad_parameters = VadOptions(**vad_parameters)
        speech_chunks = get_speech_timestamps(audio, vad_parameters)
        audio = collect_chunks(audio, speech_chunks)
        duration_after_vad = audio.shape[0] / sampling_rate
        if sr != sampling_rate:
            # resample to original sampling rate
            vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
        else:
            vad_audio = audio
        vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
        vad_audio_bytes = vad_audio.tobytes()
        return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
    except Exception as e:
        msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
        print(msg)
        return -1, ori_audio, round(time.time() - _st, 4)

def determine_pause(audio:np.ndarray,sampling_rate:int,state:AppState) -> bool:
    """Phát hiện tạm dừng trong âm thanh."""
    temp_audio = audio
    dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
    duration = len(audio) / sampling_rate
    if dur_vad > 0.5 and not state.started_talking:
        print("started talking")
        state.started_talking = True
        return False
    print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
    return (duration - dur_vad) > 1

def process_audio(audio:tuple, image: Image, state:AppState):
    if state.stream is None:
        state.stream = audio[1]
        state.sampling_rate = audio[0]
    else:
        state.stream =  np.concatenate((state.stream, audio[1]))
    if image is None:
        state.image = {"file":""}
    else:
        state.image = {"file":str(image)}
    pause_detected = determine_pause(state.stream, state.sampling_rate, state)
    state.pause_detected = pause_detected
    if state.pause_detected and state.started_talking:
        return gr.Audio(recording=False), state
    return None, state

def response(state:AppState = AppState()):
    max_new_tokens = 1024
    if not state.pause_detected and not state.started_talking:
        return None, AppState()
    audio_buffer = BytesIO()
    segment = AudioSegment(
        state.stream.tobytes(),
        frame_rate=state.sampling_rate,
        sample_width=state.stream.dtype.itemsize,
        channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
    )
    segment.export(audio_buffer, format="wav")
    textin = ""
    with sr.AudioFile(audio_buffer) as source:
        audio_data=r.record(source)
        try:
            textin=r.recognize_google(audio_data,language='vi')
        except:
            textin = ""
        #state.conversation.append({"role": "user", "content": "Bạn: " + textin})   
    textout = ""
    if textin != "":
        print("Đang nghĩ...")
        state.message = {}
        state.message={"text": textin,"files": state.image["file"]}
        
        # phần phiên dịch
        txt = state.message["text"]
        messages= [] 
        images = []
        for i, msg in enumerate(state.history): 
            if isinstance(msg[0], tuple):
                messages.append({"role": "user", "content": [{"type": "text", "text": state.history[i][0]}, {"type": "image"}]})
                messages.append({"role": "assistant", "content": [{"type": "text", "text": state.history[i][1]}]})
                images.append(Image.open(msg[0][0]).convert("RGB"))
            elif isinstance(state.history[i], tuple) and isinstance(msg[0], str):
                # messages are already handled
                pass
            elif isinstance(state.history[i][0], str) and isinstance(msg[0], str): # text only turn
                messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
                messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

        # add current message
        if state.message["files"] != "": # examples
            image = Image.open(state.message["files"]).convert("RGB")
            images.append(image)
            messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
        else: # regular input
            messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
        buffer = "Tôi không nghe rõ"
        try:
            texts = processor.apply_chat_template(messages, add_generation_prompt=True)
            if images == []:
                inputs = processor(text=texts, return_tensors="pt").to("cpu")
            else:
                inputs = processor(text=texts, images=images, return_tensors="pt").to("cpu")
            streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
            generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
            thread = Thread(target=model.generate, kwargs=generation_kwargs)
            thread.start()
            buffer = ""
            for new_text in streamer:
                buffer += new_text
                time.sleep(0.01)
            state.textout=buffer
            textout=buffer
        except:
            print("Chưa lấy được thông tin dịch")
        if state.message["files"] != "":
            state.history.append([(txt,state.image["file"]),buffer])
            state.conversation.append({"role":"user","content":"Bạn: " + str(txt) + str(state.image["file"])})
            state.conversation.append({"role":"assistant", "content": "Bot: " + str(buffer)})
        else:
            state.history.append([txt,buffer])
            state.conversation.append({"role": "user", "content":"Bạn: " + str(txt)})
            state.conversation.append({"role": "assistant", "content":"Bot: " + str(buffer)})
    else:
        textout = "Tôi không nghe rõ"
    
    
    #phần đọc chữ đã dịch
    ssr = state.stream.tobytes()
    print("Đang đọc...")
    try:
        mp3 = gTTS(textout,tld='com.vn',lang='vi',slow=False)
        mp3_fp = BytesIO()
        mp3.write_to_fp(mp3_fp)
        srr=mp3_fp.getvalue()
    except:
        print("Lỗi không đọc được")
    finally:    
        mp3_fp.close()
    yield srr, AppState(conversation=state.conversation, history=state.history)

def start_recording_user(state:AppState):  # Sửa lỗi tại đây
    if not state.stopped:
        return gr.Audio(recording=True)

title = "vietnamese by tuphamkts"
description = "A vietnamese text-to-speech demo."

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
            input_image = gr.Image(label="Hình ảnh của bạn", sources="upload", type="filepath")
        with gr.Column():
            chatbot = gr.Chatbot(label="Nội dung trò chuyện", type="messages")
            output_audio = gr.Audio(label="Trợ lý", autoplay=True)
    with gr.Row():
        output_image = gr.Image(label="Hình ảnh sau xử lý", sources="clipboard", type="filepath",visible=False)
    state = gr.State(value=AppState())
    stream = input_audio.stream(
        process_audio,
        [input_audio, input_image, state],
        [input_audio, state],
        stream_every=0.50,
        time_limit=30,
    )
    respond = input_audio.stop_recording(
        response,
        [state],
        [output_audio, state],
    )
    respond.then(lambda s: s.conversation, [state], [chatbot])
    #respond.then(lambda s: s.image, [state], [output_image])
    restart = output_audio.stop(
        start_recording_user,
        [state, input_image],
        [input_audio],
    )
    cancel = gr.Button("Stop Conversation", variant="stop")
    cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
                [state, input_audio], cancels=[respond, restart])
demo.launch()