File size: 1,018 Bytes
7940dfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import joblib
from sklearn.datasets import fetch_openml
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
dataset = fetch_openml(data_id=43355, as_frame=True, parser='auto')
diamond_prices = dataset.data
target = ['price']
numeric_features = ['carat']
categorical_features = ['shape', 'cut', 'color', 'clarity', 'report', 'type']
X = diamond_prices.drop(columns=target)
y = diamond_prices[target]
Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y,
test_size=0.2,
random_state=42
)
preprocessor = make_column_transformer(
(StandardScaler(), numeric_features),
(OneHotEncoder(handle_unknown='ignore'), categorical_features)
)
model_pipeline = make_pipeline(preprocessor, DecisionTreeRegressor())
model_pipeline.fit(Xtrain, ytrain)
joblib.dump(model_pipeline, 'model-v1.joblib') |