Spaces:
Runtime error
Runtime error
File size: 8,474 Bytes
8e5cc83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from typing import Tuple
import gradio as gr
import numpy as np
import supervision as sv
import torch
import time
from PIL import Image
from torchvision.transforms import ToTensor
# from transformers import SamModel, SamProcessor
from efficient_sam.build_efficient_sam import build_efficient_sam_vits
from efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
from efficientvit.sam_model_zoo import create_sam_model
MARKDOWN = """
# EfficientViT-SAM vs EfficientSAM vs SAM
Paper source:
[EfficientViT-SAM](https://arxiv.org/abs/2402.05008) and [EfficientSAM](https://arxiv.org/abs/2312.00863) and
[SAM](https://arxiv.org/abs/2304.02643)
\n
Github Source Code: [Link](https://github.com/pg56714/Segment-Anything-Arena)
\n
The SAM model takes one minute to run to completion, which slow down other models. Currently, EfficientViT-SAM and EfficientSAM are displayed first.
The source code for all three models is available, but the SAM is commented out.
"""
BOX_EXAMPLES = [
["https://media.roboflow.com/efficient-sam/corgi.jpg", 801, 510, 1782, 993],
]
PROMPT_COLOR = sv.Color.from_hex("#D3D3D3")
MASK_COLOR = sv.Color.from_hex("#FF0000")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE).eval()
# SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
EFFICIENT_SAM_MODEL = build_efficient_sam_vits().to(DEVICE).eval()
MASK_ANNOTATOR = sv.MaskAnnotator(color=MASK_COLOR, color_lookup=sv.ColorLookup.INDEX)
EFFICIENTVITSAM = EfficientViTSamPredictor(
create_sam_model(name="xl1", weight_url="./weights/xl1.pt").to(DEVICE).eval()
)
def annotate_image_with_box_prompt_result(
image: np.ndarray,
detections: sv.Detections,
x_min: int,
y_min: int,
x_max: int,
y_max: int,
) -> np.ndarray:
h, w, _ = image.shape
bgr_image = image[:, :, ::-1]
annotated_bgr_image = MASK_ANNOTATOR.annotate(
scene=bgr_image.copy(), detections=detections
)
annotated_bgr_image = sv.draw_rectangle(
scene=annotated_bgr_image,
rect=sv.Rect(
x=x_min,
y=y_min,
width=int(x_max - x_min),
height=int(y_max - y_min),
),
color=PROMPT_COLOR,
thickness=sv.calculate_optimal_line_thickness(resolution_wh=(w, h)),
)
return annotated_bgr_image[:, :, ::-1]
def efficientvit_sam_box_inference(
image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int
) -> np.ndarray:
t1 = time.time()
box = np.array([[x_min, y_min, x_max, y_max]])
EFFICIENTVITSAM.set_image(image)
mask = EFFICIENTVITSAM.predict(box=box, multimask_output=False)
mask = mask[0]
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
result = annotate_image_with_box_prompt_result(
image=image,
detections=detections,
x_max=x_max,
x_min=x_min,
y_max=y_max,
y_min=y_min,
)
t2 = time.time()
print(f"timecost: {t2-t1}")
return result
def inference_with_box(
image: np.ndarray,
box: np.ndarray,
model: torch.jit.ScriptModule,
device: torch.device,
) -> np.ndarray:
bbox = torch.reshape(torch.tensor(box), [1, 1, 2, 2])
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
img_tensor = ToTensor()(image)
predicted_logits, predicted_iou = model(
img_tensor[None, ...].to(device),
bbox.to(device),
bbox_labels.to(device),
)
predicted_logits = predicted_logits.cpu()
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
max_predicted_iou = -1
selected_mask_using_predicted_iou = None
for m in range(all_masks.shape[0]):
curr_predicted_iou = predicted_iou[m]
if (
curr_predicted_iou > max_predicted_iou
or selected_mask_using_predicted_iou is None
):
max_predicted_iou = curr_predicted_iou
selected_mask_using_predicted_iou = all_masks[m]
return selected_mask_using_predicted_iou
def efficient_sam_box_inference(
image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int
) -> np.ndarray:
t1 = time.time()
box = np.array([[x_min, y_min], [x_max, y_max]])
mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE)
mask = mask[np.newaxis, ...]
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
result = annotate_image_with_box_prompt_result(
image=image,
detections=detections,
x_max=x_max,
x_min=x_min,
y_max=y_max,
y_min=y_min,
)
t2 = time.time()
print(f"timecost: {t2-t1}")
return result
# def sam_box_inference(
# image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int
# ) -> np.ndarray:
# t1 = time.time()
# input_boxes = [[[x_min, y_min, x_max, y_max]]]
# inputs = SAM_PROCESSOR(
# Image.fromarray(image), input_boxes=[input_boxes], return_tensors="pt"
# ).to(DEVICE)
# with torch.no_grad():
# outputs = SAM_MODEL(**inputs)
# mask = SAM_PROCESSOR.image_processor.post_process_masks(
# outputs.pred_masks.cpu(),
# inputs["original_sizes"].cpu(),
# inputs["reshaped_input_sizes"].cpu(),
# )[0][0][0].numpy()
# mask = mask[np.newaxis, ...]
# detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
# result = annotate_image_with_box_prompt_result(
# image=image,
# detections=detections,
# x_max=x_max,
# x_min=x_min,
# y_max=y_max,
# y_min=y_min,
# )
# t2 = time.time()
# print(f"timecost: {t2-t1}")
# return result
def box_inference(
image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int
) -> Tuple[np.ndarray, np.ndarray]:
return (
efficientvit_sam_box_inference(image, x_min, y_min, x_max, y_max),
efficient_sam_box_inference(image, x_min, y_min, x_max, y_max),
# sam_box_inference(image, x_min, y_min, x_max, y_max),
)
# def clear(_: np.ndarray) -> Tuple[None, None, None]:
# return None, None, None
def clear(_: np.ndarray) -> Tuple[None, None]:
return None, None
box_input_image = gr.Image()
x_min_number = gr.Number(label="x_min")
y_min_number = gr.Number(label="y_min")
x_max_number = gr.Number(label="x_max")
y_max_number = gr.Number(label="y_max")
box_inputs = [box_input_image, x_min_number, y_min_number, x_max_number, y_max_number]
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
box_input_image.render()
efficientvit_sam_box_output_image = gr.Image(label="EfficientVit-SAM")
efficient_sam_box_output_image = gr.Image(label="EfficientSAM")
# sam_box_output_image = gr.Image(label="SAM")
with gr.Row():
x_min_number.render()
y_min_number.render()
x_max_number.render()
y_max_number.render()
submit_box_inference_button = gr.Button(
value="Submit", scale=1, variant="primary"
)
gr.Examples(
# fn=box_inference,
examples=BOX_EXAMPLES,
inputs=box_inputs,
outputs=[
efficientvit_sam_box_output_image,
efficient_sam_box_output_image,
# sam_box_output_image,
],
)
submit_box_inference_button.click(
efficientvit_sam_box_inference,
inputs=box_inputs,
outputs=efficientvit_sam_box_output_image,
)
submit_box_inference_button.click(
efficient_sam_box_inference,
inputs=box_inputs,
outputs=efficient_sam_box_output_image,
)
# submit_box_inference_button.click(
# sam_box_inference, inputs=box_inputs, outputs=sam_box_output_image
# )
box_input_image.change(
clear,
inputs=box_input_image,
outputs=[
efficientvit_sam_box_output_image,
efficient_sam_box_output_image,
# sam_box_output_image,
],
)
demo.launch(debug=False, show_error=True)
|