File size: 4,314 Bytes
f69cd15 eaa8689 f69cd15 1ecb321 eaa8689 5cbc9b1 6af3026 1ecb321 eaa8689 5479e73 eaa8689 5479e73 eaa8689 8654223 3ea9ed2 8654223 82b1749 5e35140 82b1749 6af3026 5699bf9 b453f9d 5699bf9 5e35140 f6e997e 5e35140 5479e73 b453f9d 6af3026 b453f9d 1ecb321 534e5bb f69cd15 1ecb321 f69cd15 5e35140 01db67e 5e35140 f69cd15 1ecb321 e08a1e8 f69cd15 1ecb321 f69cd15 1ecb321 f69cd15 01db67e 4311e2a f69cd15 1ecb321 01db67e 4311e2a f69cd15 fe775c6 f69cd15 01db67e fe775c6 b453f9d fe775c6 1ecb321 f69cd15 534e5bb 1ecb321 b453f9d 1ecb321 efa1709 5cbc9b1 8654223 f69cd15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import os
import cv2
from PIL import Image
import gradio as gr
import numpy as np
import random
import base64
import requests
import json
def start_tryon(person_img, garment_img, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
encoded_person_img = cv2.imencode('.jpg', cv2.cvtColors(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColors(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')
url = "https://" + os.environ['tryon_url']
token = os.environ['token']
cookie = os.environ['Cookie']
headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie}
data = {
"clothImage": encoded_garment_img,
"humanImage": encoded_person_img,
"seed": seed
}
response = requests.post(url, headers=headers, data=json.dumps(data))
print("response code", response.status_code)
result_img = None
if response.status_code == 200:
result = response.json()['result']
status = result['status']
if status == "success":
result = base64.b64decode(result['result'])
result_np = np.frombuffer(result, np.uint8)
result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
result_img = cv2.cvtColors(result_img, cv2.COLOR_RGB2BGR)
info = "Success"
else:
info = "Try again latter"
else:
info = "URL error"
return result_img, seed, info
MAX_SEED = 999999
example_path = os.path.join(os.path.dirname(__file__), 'assets')
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
css="""
#col-left {
margin: 0 auto;
max-width: 380px;
}
#col-mid {
margin: 0 auto;
max-width: 380px;
}
#col-right {
margin: 0 auto;
max-width: 520px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as Tryon:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id = "col-left"):
imgs = gr.Image(label="Person image", sources='upload', type="numpy")
# category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'], value="upper_body")
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=human_list_path
)
with gr.Column(elem_id = "col-mid"):
garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
example = gr.Examples(
inputs=garm_img,
examples_per_page=10,
examples=garm_list_path)
with gr.Column(elem_id = "col-right"):
image_out = gr.Image(label="Output", show_share_button=False)
with gr.Row():
seed_used = gr.Number(label="Seed Used")
result_info = gr.Text(label="Info")
try_button = gr.Button(value="Try-on", elem_id="button")
with gr.Column():
with gr.Accordion(label="Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon')
# with gr.Row(label="Examples"):
# with gr.Column(elem_id = "col-left"):
# imgs = gr.Image(label="Person image", sources='upload', type="numpy")
ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
print("ip address", ip)
Tryon.queue(max_size=10).launch()
|