Spaces:
Sleeping
Sleeping
File size: 3,215 Bytes
c3119d9 93712b8 c3119d9 e00389c c3119d9 e00389c c3119d9 e00389c c3119d9 e00389c c3119d9 caf9f8a c3119d9 caf9f8a c3119d9 caf9f8a c3119d9 caf9f8a c3119d9 e00389c c3119d9 caf9f8a c3119d9 caf9f8a c3119d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#|default_exp app"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"from fastai.vision.all import *\n",
"import gradio as gr\n",
"import timm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"learn = load_learner(\"model.pkl\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"categories = learn.dls.vocab\n",
"\n",
"\n",
"def classify_img(img):\n",
" pred_class, pred_idx, probs = learn.predict(img)\n",
" return dict(zip(categories, map(float, probs)))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/plain": []
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#|export\n",
"from pathlib import Path\n",
"\n",
"image = gr.Image(shape=(192, 192))\n",
"label = gr.Label()\n",
"\n",
"path = Path(\"examples\")\n",
"examples = [file for file in path.iterdir()]\n",
"\n",
"intf = gr.Interface(\n",
" fn=classify_img,\n",
" inputs=image,\n",
" outputs=label,\n",
" examples=examples,\n",
" title=\"The GOAT\",\n",
" description=\"Is it The GOAT?\",\n",
")\n",
"intf.launch(inline=False)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import nbdev"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Export Successful\n"
]
}
],
"source": [
"nbdev.export.nb_export(\"app.ipynb\", \"app\")\n",
"print(\"Export Successful\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|