Spaces:
Running
Running
File size: 3,790 Bytes
e81b878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import requests
import os
import time
# Define the endpoint and API key
api_url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
api_key = os.getenv('HFSecret')
headers = {
"Authorization": f"Bearer {api_key}"
}
# API call function
def call_huggingface_api(prompt):
data = {"inputs": prompt, "parameters": {"max_length": 500, "temperature": 0.5}}
response = requests.post(api_url, headers=headers, json=data)
if response.status_code != 200:
st.error(f"Error: {response.status_code} - {response.text}")
return None
return response.json()
# Function to load text from a URL
def load_text_from_url(url):
response = requests.get(url)
return response.text if response.status_code == 200 else ""
# Preset sample text options
options = ['None', 'Appreciation Letter', 'Regret Letter', 'Kindness Tale', 'Lost Melody Tale', 'Twitter Example 1', 'Twitter Example 2']
url_dict = {
'Appreciation Letter': "https://raw.githubusercontent.com/peteciank/public_files/main/Transformers/Appreciation_Letter.txt",
'Regret Letter': "https://raw.githubusercontent.com/peteciank/public_files/main/Transformers/Regret_Letter.txt",
'Kindness Tale': "https://raw.githubusercontent.com/peteciank/public_files/main/Transformers/Kindness_Tale.txt",
'Lost Melody Tale': "https://raw.githubusercontent.com/peteciank/public_files/main/Transformers/Lost_Melody_Tale.txt",
'Twitter Example 1': "https://raw.githubusercontent.com/peteciank/public_files/main/Transformers/Twitter_Example_1.txt",
'Twitter Example 2': "https://raw.githubusercontent.com/peteciank/public_files/main/Transformers/Twitter_Example_2.txt"
}
# Streamlit layout
st.title("Sentiment Analysis, Summarization, and Keyword Extraction")
# Dropdown to select a text file
selected_option = st.selectbox("Select a preset option", options)
# Initialize text_input
text_input = ""
# Load text based on dropdown selection
if selected_option != 'None':
with st.spinner("Loading text..."):
text_input = load_text_from_url(url_dict[selected_option])
time.sleep(1) # Simulate loading time
st.success("Text loaded!")
else:
text_input = st.text_area("Or enter your own text for analysis")
if st.button("Analyze"):
if text_input:
with st.spinner('Processing...'):
# Sentiment Analysis
sentiment_prompt = f"Perform sentiment analysis on the following text: {text_input}"
sentiment_result = call_huggingface_api(sentiment_prompt)
# Summarization
summarization_prompt = f"Summarize the following text: {text_input}"
summarization_result = call_huggingface_api(summarization_prompt)
# Keyword Extraction
keyword_prompt = f"Extract important keywords from the following text: {text_input}"
keyword_result = call_huggingface_api(keyword_prompt)
time.sleep(1) # Simulate a small delay
st.success('Analysis completed!')
# Display Results in Collapsible Expanders
if sentiment_result:
with st.expander("Sentiment Analysis (Conclusion)"):
st.write("Conclusion: Positive :) or Negative :( ")
st.write(sentiment_result[0]['generated_text'])
if summarization_result:
with st.expander("Summarization"):
st.write(summarization_result[0]['generated_text'])
if keyword_result:
with st.expander("Keyword Extraction"):
st.write(keyword_result[0]['generated_text'].split(',')) # Display keywords as list
else:
st.warning("Please enter some text for analysis.")
|