File size: 24,063 Bytes
e1ebf71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import os
import cv2
import numpy as np
import gradio as gr
from copy import deepcopy
from einops import rearrange
from types import SimpleNamespace

import datetime
import PIL
from PIL import Image
from PIL.ImageOps import exif_transpose
import torch
import torch.nn.functional as F

from diffusers import DDIMScheduler, AutoencoderKL, DPMSolverMultistepScheduler
from drag_pipeline import DragPipeline

from torchvision.utils import save_image
from pytorch_lightning import seed_everything

from .drag_utils import drag_diffusion_update, drag_diffusion_update_gen
from .lora_utils import train_lora
from .attn_utils import register_attention_editor_diffusers, MutualSelfAttentionControl

import imageio


# -------------- general UI functionality --------------
def clear_all(length=480):
    return gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        [], None, None

def clear_all_gen(length=480):
    return gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        [], None, None, None

def mask_image(image,
               mask,
               color=[255,0,0],
               alpha=0.5):
    """ Overlay mask on image for visualization purpose. 
    Args:
        image (H, W, 3) or (H, W): input image
        mask (H, W): mask to be overlaid
        color: the color of overlaid mask
        alpha: the transparency of the mask
    """
    out = deepcopy(image)
    img = deepcopy(image)
    img[mask == 1] = color
    out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
    return out

def store_img(img, length=512):
    image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
    height,width,_ = image.shape
    image = Image.fromarray(image)
    image = exif_transpose(image)
    image = image.resize((length,int(length*height/width)), PIL.Image.BILINEAR)
    mask  = cv2.resize(mask, (length,int(length*height/width)), interpolation=cv2.INTER_NEAREST)
    image = np.array(image)

    if mask.sum() > 0:
        mask = np.uint8(mask > 0)
        masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
    else:
        masked_img = image.copy()
    # when new image is uploaded, `selected_points` should be empty
    return image, [], masked_img, mask

# once user upload an image, the original image is stored in `original_image`
# the same image is displayed in `input_image` for point clicking purpose
def store_img_gen(img):
    image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
    image = Image.fromarray(image)
    image = exif_transpose(image)
    image = np.array(image)
    if mask.sum() > 0:
        mask = np.uint8(mask > 0)
        masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
    else:
        masked_img = image.copy()
    # when new image is uploaded, `selected_points` should be empty
    return image, [], masked_img, mask

# user click the image to get points, and show the points on the image
def get_points(img,
               sel_pix,
               evt: gr.SelectData):
    img_copy = img.copy() if isinstance(img, np.ndarray) else np.array(img)
    # collect the selected point
    sel_pix.append(evt.index)
    # draw points
    points = []
    for idx, point in enumerate(sel_pix):
        if idx % 2 == 0:
            # draw a red circle at the handle point
            cv2.circle(img_copy, tuple(point), 10, (255, 0, 0), -1)
        else:
            # draw a blue circle at the handle point
            cv2.circle(img_copy, tuple(point), 10, (0, 0, 255), -1)
        points.append(tuple(point))
        # draw an arrow from handle point to target point
        if len(points) == 2:
            cv2.arrowedLine(img_copy, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
            points = []
    return img_copy if isinstance(img, np.ndarray) else np.array(img_copy)

# clear all handle/target points
def undo_points(original_image,
                mask):
    if mask.sum() > 0:
        mask = np.uint8(mask > 0)
        masked_img = mask_image(original_image, 1 - mask, color=[0, 0, 0], alpha=0.3)
    else:
        masked_img = original_image.copy()
    return masked_img, []
# ------------------------------------------------------

# ----------- dragging user-input image utils -----------
def train_lora_interface(original_image,
                         prompt,
                         model_path,
                         vae_path,
                         lora_path,
                         lora_step,
                         lora_lr,
                         lora_rank,
                         progress=gr.Progress()):
    train_lora(
        original_image,
        prompt,
        model_path,
        vae_path,
        lora_path,
        lora_step,
        lora_lr,
        lora_rank,
        progress)
    return "Training LoRA Done!"

def preprocess_image(image,
                     device):
    image = torch.from_numpy(image).float() / 127.5 - 1 # [-1, 1]
    image = rearrange(image, "h w c -> 1 c h w")
    image = image.to(device)
    return image

def run_drag(source_image,
             image_with_clicks,
             mask,
             prompt,
             points,
             inversion_strength,
             lam,
             latent_lr,
             n_pix_step,
             model_path,
             vae_path,
             lora_path,
             start_step,
             start_layer,
             create_gif_checkbox,
             gif_interval,
             save_dir="./results"
    ):
    # initialize model
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
                          beta_schedule="scaled_linear", clip_sample=False,
                          set_alpha_to_one=False, steps_offset=1)
    model = DragPipeline.from_pretrained(model_path, scheduler=scheduler).to(device)
    # call this function to override unet forward function,
    # so that intermediate features are returned after forward
    model.modify_unet_forward()

    # set vae
    if vae_path != "default":
        model.vae = AutoencoderKL.from_pretrained(
            vae_path
        ).to(model.vae.device, model.vae.dtype)

    # initialize parameters
    seed = 42 # random seed used by a lot of people for unknown reason
    seed_everything(seed)

    args = SimpleNamespace()
    args.prompt = prompt
    args.points = points
    args.n_inference_step = 50
    args.n_actual_inference_step = round(inversion_strength * args.n_inference_step)
    args.guidance_scale = 1.0

    args.unet_feature_idx = [3]

    args.sup_res = 256

    args.r_m = 1
    args.r_p = 3
    args.lam = lam

    args.lr = latent_lr

    args.n_pix_step = n_pix_step
    args.create_gif_checkbox = create_gif_checkbox
    args.gif_interval = gif_interval
    print(args)

    full_h, full_w = source_image.shape[:2]

    source_image = preprocess_image(source_image, device)
    image_with_clicks = preprocess_image(image_with_clicks, device)

    # set lora
    if lora_path == "":
        print("applying default parameters")
        model.unet.set_default_attn_processor()
    else:
        print("applying lora: " + lora_path)
        model.unet.load_attn_procs(lora_path)

    # invert the source image
    # the latent code resolution is too small, only 64*64
    invert_code = model.invert(source_image,
                               prompt,
                               guidance_scale=args.guidance_scale,
                               num_inference_steps=args.n_inference_step,
                               num_actual_inference_steps=args.n_actual_inference_step)

    mask = torch.from_numpy(mask).float() / 255.
    mask[mask > 0.0] = 1.0
    mask = rearrange(mask, "h w -> 1 1 h w").cuda()
    mask = F.interpolate(mask, (args.sup_res, args.sup_res), mode="nearest")

    handle_points = []
    target_points = []
    # here, the point is in x,y coordinate
    for idx, point in enumerate(points):
        cur_point = torch.tensor([point[1] / full_h, point[0] / full_w]) * args.sup_res
        cur_point = torch.round(cur_point)
        if idx % 2 == 0:
            handle_points.append(cur_point)
        else:
            target_points.append(cur_point)
    print('handle points:', handle_points)
    print('target points:', target_points)

    init_code = invert_code
    init_code_orig = deepcopy(init_code)
    model.scheduler.set_timesteps(args.n_inference_step)
    t = model.scheduler.timesteps[args.n_inference_step - args.n_actual_inference_step]

    # feature shape: [1280,16,16], [1280,32,32], [640,64,64], [320,64,64]
    # update according to the given supervision
    updated_init_code, gif_updated_init_code = drag_diffusion_update(model, init_code, t,
        handle_points, target_points, mask, args)

    # hijack the attention module
    # inject the reference branch to guide the generation
    editor = MutualSelfAttentionControl(start_step=start_step,
                                        start_layer=start_layer,
                                        total_steps=args.n_inference_step,
                                        guidance_scale=args.guidance_scale)
    if lora_path == "":
        register_attention_editor_diffusers(model, editor, attn_processor='attn_proc')
    else:
        register_attention_editor_diffusers(model, editor, attn_processor='lora_attn_proc')

    # inference the synthesized image
    gen_image = model(
        prompt=args.prompt,
        batch_size=2,
        latents=torch.cat([init_code_orig, updated_init_code], dim=0),
        guidance_scale=args.guidance_scale,
        num_inference_steps=args.n_inference_step,
        num_actual_inference_steps=args.n_actual_inference_step
        )[1].unsqueeze(dim=0)

    # if gif, inference the synthesized image for each step and save them to gif
    if args.create_gif_checkbox:
        out_frames = []
        for step_updated_init_code in gif_updated_init_code:
            gen_image = model(
                prompt=args.prompt,
                batch_size=1,
                latents=step_updated_init_code,
                guidance_scale=args.guidance_scale,
                num_inference_steps=args.n_inference_step,
                num_actual_inference_steps=args.n_actual_inference_step
                ).unsqueeze(dim=0)
            out_frame = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
            out_frame = (out_frame * 255).astype(np.uint8)
            out_frames.append(out_frame)
        #save the gif
        if not os.path.isdir(save_dir):
            os.mkdir(save_dir)
        save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
        imageio.mimsave(os.path.join(save_dir, save_prefix + '.gif'), out_frames, fps=10)
            

    # save the original image, user editing instructions, synthesized image
    save_result = torch.cat([
        source_image * 0.5 + 0.5,
        torch.ones((1,3,512,25)).cuda(),
        image_with_clicks * 0.5 + 0.5,
        torch.ones((1,3,512,25)).cuda(),
        gen_image[0:1]
    ], dim=-1)

    if not os.path.isdir(save_dir):
        os.mkdir(save_dir)
    save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
    save_image(save_result, os.path.join(save_dir, save_prefix + '.png'))

    out_image = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
    out_image = (out_image * 255).astype(np.uint8)
    return out_image

# -------------------------------------------------------

# ----------- dragging generated image utils -----------
# once the user generated an image
# it will be displayed on mask drawing-areas and point-clicking area
def gen_img(
    length, # length of the window displaying the image
    height, # height of the generated image
    width, # width of the generated image
    n_inference_step,
    scheduler_name,
    seed,
    guidance_scale,
    prompt,
    neg_prompt,
    model_path,
    vae_path,
    lora_path):
    # initialize model
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = DragPipeline.from_pretrained(model_path, torch_dtype=torch.float16).to(device)
    if scheduler_name == "DDIM":
        scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
                        beta_schedule="scaled_linear", clip_sample=False,
                        set_alpha_to_one=False, steps_offset=1)
    elif scheduler_name == "DPM++2M":
        scheduler = DPMSolverMultistepScheduler.from_config(
            model.scheduler.config
        )
    elif scheduler_name == "DPM++2M_karras":
        scheduler = DPMSolverMultistepScheduler.from_config(
            model.scheduler.config, use_karras_sigmas=True
        )
    else:
        raise NotImplementedError("scheduler name not correct")
    model.scheduler = scheduler
    # call this function to override unet forward function,
    # so that intermediate features are returned after forward
    model.modify_unet_forward()

    # set vae
    if vae_path != "default":
        model.vae = AutoencoderKL.from_pretrained(
            vae_path
        ).to(model.vae.device, model.vae.dtype)
    # set lora
    #if lora_path != "":
    #    print("applying lora for image generation: " + lora_path)
    #    model.unet.load_attn_procs(lora_path)
    if lora_path != "":
        print("applying lora: " + lora_path)
        model.load_lora_weights(lora_path, weight_name="lora.safetensors")

    # initialize init noise
    seed_everything(seed)
    init_noise = torch.randn([1, 4, height // 8, width // 8], device=device, dtype=model.vae.dtype)
    gen_image, intermediate_latents = model(prompt=prompt,
                                            neg_prompt=neg_prompt,
                                            num_inference_steps=n_inference_step,
                                            latents=init_noise,
                                            guidance_scale=guidance_scale,
                                            return_intermediates=True)
    gen_image = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
    gen_image = (gen_image * 255).astype(np.uint8)

    if height < width:
        # need to do this due to Gradio's bug
        return gr.Image.update(value=gen_image, height=int(length*height/width), width=length), \
            gr.Image.update(height=int(length*height/width), width=length), \
            gr.Image.update(height=int(length*height/width), width=length), \
            None, \
            intermediate_latents
    else:
        return gr.Image.update(value=gen_image, height=length, width=length), \
            gr.Image.update(value=None, height=length, width=length), \
            gr.Image.update(value=None, height=length, width=length), \
            None, \
            intermediate_latents

def run_drag_gen(
    n_inference_step,
    scheduler_name,
    source_image,
    image_with_clicks,
    intermediate_latents_gen,
    guidance_scale,
    mask,
    prompt,
    neg_prompt,
    points,
    inversion_strength,
    lam,
    latent_lr,
    n_pix_step,
    model_path,
    vae_path,
    lora_path,
    start_step,
    start_layer,
    create_gif_checkbox,
    create_tracking_points_checkbox,
    gif_interval,
    gif_fps,
    save_dir="./results"):
    # initialize model
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = DragPipeline.from_pretrained(model_path, torch_dtype=torch.float16).to(device)
    if scheduler_name == "DDIM":
        scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
                        beta_schedule="scaled_linear", clip_sample=False,
                        set_alpha_to_one=False, steps_offset=1)
    elif scheduler_name == "DPM++2M":
        scheduler = DPMSolverMultistepScheduler.from_config(
            model.scheduler.config
        )
    elif scheduler_name == "DPM++2M_karras":
        scheduler = DPMSolverMultistepScheduler.from_config(
            model.scheduler.config, use_karras_sigmas=True
        )
    else:
        raise NotImplementedError("scheduler name not correct")
    model.scheduler = scheduler
    # call this function to override unet forward function,
    # so that intermediate features are returned after forward
    model.modify_unet_forward()

    # set vae
    if vae_path != "default":
        model.vae = AutoencoderKL.from_pretrained(
            vae_path
        ).to(model.vae.device, model.vae.dtype)

    # initialize parameters
    seed = 42 # random seed used by a lot of people for unknown reason
    seed_everything(seed)

    args = SimpleNamespace()
    args.prompt = prompt
    args.neg_prompt = neg_prompt
    args.points = points
    args.n_inference_step = n_inference_step
    args.n_actual_inference_step = round(n_inference_step * inversion_strength)
    args.guidance_scale = guidance_scale

    args.unet_feature_idx = [3]

    full_h, full_w = source_image.shape[:2]

    args.sup_res_h = int(0.5*full_h)
    args.sup_res_w = int(0.5*full_w)

    args.r_m = 1
    args.r_p = 3
    args.lam = lam

    args.lr = latent_lr

    args.n_pix_step = n_pix_step
    args.create_gif_checkbox = create_gif_checkbox
    args.create_tracking_points_checkbox = create_tracking_points_checkbox
    args.gif_interval = gif_interval
    print(args)

    source_image = preprocess_image(source_image, device)
    image_with_clicks = preprocess_image(image_with_clicks, device)

    # set lora
    #if lora_path == "":
    #    print("applying default parameters")
    #    model.unet.set_default_attn_processor()
    #else:
    #    print("applying lora: " + lora_path)
    #    model.unet.load_attn_procs(lora_path)
    if lora_path != "":
        print("applying lora: " + lora_path)
        model.load_lora_weights(lora_path, weight_name="lora.safetensors")

    mask = torch.from_numpy(mask).float() / 255.
    mask[mask > 0.0] = 1.0
    mask = rearrange(mask, "h w -> 1 1 h w").cuda()
    mask = F.interpolate(mask, (args.sup_res_h, args.sup_res_w), mode="nearest")

    handle_points = []
    target_points = []
    # here, the point is in x,y coordinate
    for idx, point in enumerate(points):
        cur_point = torch.tensor([point[1]/full_h*args.sup_res_h, point[0]/full_w*args.sup_res_w])
        cur_point = torch.round(cur_point)
        if idx % 2 == 0:
            handle_points.append(cur_point)
        else:
            target_points.append(cur_point)
    print('handle points:', handle_points)
    print('target points:', target_points)

    model.scheduler.set_timesteps(args.n_inference_step)
    t = model.scheduler.timesteps[args.n_inference_step - args.n_actual_inference_step]
    init_code = deepcopy(intermediate_latents_gen[args.n_inference_step - args.n_actual_inference_step])
    init_code_orig = deepcopy(init_code)

    # feature shape: [1280,16,16], [1280,32,32], [640,64,64], [320,64,64]
    # update according to the given supervision
    init_code = init_code.to(torch.float32)
    model = model.to(device, torch.float32)
    updated_init_code, gif_updated_init_code, handle_points_list = drag_diffusion_update_gen(model, init_code, t,
        handle_points, target_points, mask, args)
    updated_init_code = updated_init_code.to(torch.float16)
    model = model.to(device, torch.float16)

    # hijack the attention module
    # inject the reference branch to guide the generation
    editor = MutualSelfAttentionControl(start_step=start_step,
                                        start_layer=start_layer,
                                        total_steps=args.n_inference_step,
                                        guidance_scale=args.guidance_scale)
    if lora_path == "":
        register_attention_editor_diffusers(model, editor, attn_processor='attn_proc')
    else:
        register_attention_editor_diffusers(model, editor, attn_processor='lora_attn_proc')

    # inference the synthesized image
    gen_image = model(
        prompt=args.prompt,
        neg_prompt=args.neg_prompt,
        batch_size=2, # batch size is 2 because we have reference init_code and updated init_code
        latents=torch.cat([init_code_orig, updated_init_code], dim=0),
        guidance_scale=args.guidance_scale,
        num_inference_steps=args.n_inference_step,
        num_actual_inference_steps=args.n_actual_inference_step
        )[1].unsqueeze(dim=0)
    # if gif, inference the synthesized image for each step and save them to gif
    if args.create_gif_checkbox:
        out_frames = []
        print('Start Generate GIF')
        for step_updated_init_code in gif_updated_init_code:
            step_updated_init_code = step_updated_init_code.to(torch.float16)
            gen_image = model(
                prompt=args.prompt,
                batch_size=2,
                latents=torch.cat([init_code_orig, step_updated_init_code], dim=0),
                guidance_scale=args.guidance_scale,
                num_inference_steps=args.n_inference_step,
                num_actual_inference_steps=args.n_actual_inference_step
                )[1].unsqueeze(dim=0)
            out_frame = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
            out_frame = (out_frame * 255).astype(np.uint8)
            out_frames.append(out_frame)
        #save the gif
        if not os.path.isdir(save_dir):
            os.mkdir(save_dir)
        save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
        imageio.mimsave(os.path.join(save_dir, save_prefix + '.gif'), out_frames, fps=gif_fps)
        
    if args.create_tracking_points_checkbox:
        white_image_base = np.ones((full_h, full_w, 3), dtype=np.uint8) * 255
        out_points_frames = []
        previous_points = {i: None for i in range(len(handle_points))}  # To store the previous locations of points
        print('Start Generate Tracking Points GIF', len(handle_points_list), handle_points_list)
        for step_idx, step_handle_points in enumerate(handle_points_list):
            out_points_frame = white_image_base.copy()

            for idx, point in enumerate(step_handle_points):
                current_point = (int(point[1].item()), int(point[0].item()))
                # Draw a circle at the handle point
                cv2.circle(out_points_frame, current_point, 4, (0, 0, 255), -1)
                # Optionally, add text labels
                cv2.putText(out_points_frame, f'P{idx}', (current_point[0] + 5, current_point[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)

                # Draw lines to show trajectory
                if previous_points[idx] is not None:
                    cv2.line(out_points_frame, previous_points[idx], current_point, (0, 255, 0), 2)
                previous_points[idx] = current_point

            out_points_frame = out_points_frame.astype(np.uint8)
            out_points_frames.append(out_points_frame)

        # Save the gif
        if not os.path.isdir(save_dir):
            os.mkdir(save_dir)
        save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
        imageio.mimsave(os.path.join(save_dir, save_prefix + '_tracking_points.gif'), out_points_frames, fps=gif_fps)


    # save the original image, user editing instructions, synthesized image
    save_result = torch.cat([
        source_image * 0.5 + 0.5,
        torch.ones((1,3,full_h,25)).cuda(),
        image_with_clicks * 0.5 + 0.5,
        torch.ones((1,3,full_h,25)).cuda(),
        gen_image[0:1]
    ], dim=-1)

    if not os.path.isdir(save_dir):
        os.mkdir(save_dir)
    save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
    save_image(save_result, os.path.join(save_dir, save_prefix + '.png'))

    out_image = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
    out_image = (out_image * 255).astype(np.uint8)
    return out_image

# ------------------------------------------------------