File size: 6,640 Bytes
1786cfb
dff62e8
1786cfb
 
dff62e8
 
1786cfb
 
 
 
 
 
 
 
 
 
4be6736
 
1786cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f9324f
1786cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5a6d2
1786cfb
 
 
 
de5a6d2
 
1786cfb
 
 
 
 
 
de5a6d2
 
ed1552a
5a7f930
72b973d
5a7f930
de5a6d2
 
 
 
5a7f930
de5a6d2
5a7f930
1786cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# set path
import glob, os, sys; sys.path.append('../scripts')

#import helper
import scripts.process as pre
import scripts.clean as clean

#import needed libraries
import seaborn as sns
from pandas import DataFrame
from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd 
from wordcloud import WordCloud
import matplotlib.pyplot as plt

import tempfile
import sqlite3

def app():

    with st.container():
        st.markdown("<h1 style='text-align: center; color: black;'> Analyse Policy Document</h1>", unsafe_allow_html=True)
        st.write(' ')
        st.write(' ')

    with st.expander("โ„น๏ธ - About this app", expanded=True):

        st.write(
            """     
            The *Analyse Policy Document* app is an easy-to-use interface built in Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network. \n
                1. Keyword heatmap \n
                2. SDG Classification for the paragraphs/texts in the document
            """
        )

        st.markdown("")

    st.markdown("")
    st.markdown("##  ๐Ÿ“Œ Step One: Upload document ")
    
    with st.container():

        file = st.file_uploader('Upload PDF File', type=['pdf', 'docx', 'txt'])
        
        if file is not None:
            
    
            with tempfile.NamedTemporaryFile(mode="wb") as temp:
                bytes_data = file.getvalue()
                temp.write(bytes_data)
            
                st.write("Filename: ", file.name)
                
                # load document
                docs = pre.load_document(temp.name, file)

                # preprocess document
                docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
                
                # testing
                # st.write(len(all_text))
                # for i in par_list:
                #     st.write(i)

                @st.cache(allow_output_mutation=True)
                def load_keyBert():
                    return KeyBERT()

                kw_model = load_keyBert()

                keywords = kw_model.extract_keywords(
                all_text,
                keyphrase_ngram_range=(1, 3),
                use_mmr=True,
                stop_words="english",
                top_n=10,
                diversity=0.7,
                )

                st.markdown("## ๐ŸŽˆ What is my document about?")
                

            
                df = (
                    DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
                    .sort_values(by="Relevancy", ascending=False)
                    .reset_index(drop=True)
                )
                
                # Create and generate a word cloud image:
                text = ' '.join([str(word) for word in df["Keyword/Keyphrase"]])
                
                wordcloud = WordCloud(background_color="white", colormap="hot", random_state=42).generate(text)
              
                
                # Display the generated image:
                plt.imshow(wordcloud, interpolation='bilinear')
                plt.axis("off")
                #plt.show()
                st.pyplot()
                
                df.index += 1

                # Add styling
                cmGreen = sns.light_palette("green", as_cmap=True)
                cmRed = sns.light_palette("red", as_cmap=True)
                df = df.style.background_gradient(
                    cmap=cmGreen,
                    subset=[
                        "Relevancy",
                    ],
                )
                c1, c2, c3 = st.columns([1, 3, 1])

                format_dictionary = {
                    "Relevancy": "{:.1%}",
                }

                df = df.format(format_dictionary)

                with c2:
                    st.table(df) 

                ######## SDG classiciation
                # @st.cache(allow_output_mutation=True)
                # def load_sdgClassifier():
                #     classifier = pipeline("text-classification", model= "../models/osdg_sdg/")

                #     return classifier
                
                # load from disc (github repo) for performance boost
                @st.cache(allow_output_mutation=True)
                def load_sdgClassifier():
                    classifier = pipeline("text-classification", model= "jonas/sdg_classifier_osdg")

                    return classifier

                classifier = load_sdgClassifier()

                # # not needed, par list comes from pre_processing function already

                # word_list = all_text.split()
                # len_word_list = len(word_list)
                # par_list = []
                # par_len = 130
                # for i in range(0,len_word_list // par_len):
                #     string_part = ' '.join(word_list[i*par_len:(i+1)*par_len])
                #     par_list.append(string_part)
                    
                labels = classifier(par_list)
                labels_= [(l['label'],l['score']) for l in labels]
                df = DataFrame(labels_, columns=["SDG", "Relevancy"])
                df['text'] = par_list      
                df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)  
                df.index += 1
                df =df[df['Relevancy']>.85]
                x = df['SDG'].value_counts()

                plt.rcParams['font.size'] = 25
                colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
                # plot
                fig, ax = plt.subplots()
                ax.pie(x, colors=colors, radius=2, center=(4, 4),
                    wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index))

                st.markdown("## ๐ŸŽˆ Anything related to SDGs?")

                c4, c5, c6 = st.columns([5, 7, 1])

                # Add styling
                cmGreen = sns.light_palette("green", as_cmap=True)
                cmRed = sns.light_palette("red", as_cmap=True)
                df = df.style.background_gradient(
                    cmap=cmGreen,
                    subset=[
                        "Relevancy",
                    ],
                )

                format_dictionary = {
                    "Relevancy": "{:.1%}",
                }

                df = df.format(format_dictionary)

                with c4:
                    st.pyplot(fig)
                with c5:
                    st.table(df)