Spaces:
Runtime error
Runtime error
File size: 5,169 Bytes
dd124ec 55d03cf dd124ec 55d03cf dd124ec 2a53bc3 dd124ec f75d001 ef1d02b a087ad0 f75d001 dd124ec 121a5b7 dd124ec 0bb6ca7 dd124ec 0bb6ca7 a087ad0 f75d001 dd124ec f75d001 dd124ec f75d001 dd124ec f75d001 dd124ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# set path
import glob, os, sys; sys.path.append('../scripts')
#import helper
import scripts.process as pre
import scripts.clean as clean
#import needed libraries
import seaborn as sns
from pandas import DataFrame
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import tempfile
#Haystack Components
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True)
def start_haystack(documents_processed):
document_store = InMemoryDocumentStore()
document_store.write_documents(documents_processed)
retriever = TfidfRetriever(document_store=document_store)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-distilled", use_gpu=True)
pipeline = ExtractiveQAPipeline(reader, retriever)
return pipeline
def ask_question(question):
prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
results = []
for answer in prediction["answers"]:
answer = answer.to_dict()
if answer["answer"]:
results.append(
{
"context": "..." + answer["context"] + "...",
"answer": answer["answer"],
"relevance": round(answer["score"] * 100, 2),
"offset_start_in_doc": answer["offsets_in_document"][0]["start"],
}
)
else:
results.append(
{
"context": None,
"answer": None,
"relevance": round(answer["score"] * 100, 2),
}
)
return results
def app():
with st.container():
st.markdown("<h1 style='text-align: center; color: black;'> Keyword Search</h1>", unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
The *Keyword Search* app is an easy-to-use interface built in Streamlit for doing keyword search in policy document - developed by GIZ Data and the Sustainable Development Solution Network.
"""
)
st.markdown("")
st.markdown("")
st.markdown("## 📌 Step One: Upload document ")
with st.container():
file = st.file_uploader('Upload PDF File', type=['pdf', 'docx', 'txt'])
if file is not None:
with tempfile.NamedTemporaryFile(mode="wb") as temp:
bytes_data = file.getvalue()
temp.write(bytes_data)
st.write("Uploaded Filename: ", uploaded_file.name)
file_name = file.name
file_path = temp.name
st.write("Filename: ", file.name)
# load document
documents = pre.load_document(temp.name,file_name)
documents_processed = pre.preprocessing(documents)
pipeline = start_haystack(documents_processed)
#docs = pre.load_document(temp.name, file)
# preprocess document
#haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
question = st.text_input("Please enter your question here, we will look for the answer in the document.",
value="floods",)
if st.button("Find them."):
with st.spinner("👑 Performing semantic search on"):#+file.name+"..."):
try:
msg = 'Asked ' + question
logging.info(msg)
st.session_state.results = ask_question(question)
except Exception as e:
logging.exception(e)
if st.session_state.results:
st.write('## Top Results')
for count, result in enumerate(st.session_state.results):
if result["answer"]:
answer, context = result["answer"], result["context"]
start_idx = context.find(answer)
end_idx = start_idx + len(answer)
st.write(
markdown(context[:start_idx] + str(annotation(body=answer, label="ANSWER", background="#964448", color='#ffffff')) + context[end_idx:]),
unsafe_allow_html=True,
)
st.markdown(f"**Relevance:** {result['relevance']}")
else:
st.info(
"🤔 Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
)
|