Spaces:
Runtime error
Runtime error
File size: 5,046 Bytes
aa936e5 a92d81b 5f6deb9 aa936e5 a92d81b aa936e5 a92d81b aa936e5 5f6deb9 aa936e5 a92d81b aa936e5 a92d81b aa936e5 5f6deb9 a92d81b aa936e5 5f6deb9 428da67 5f6deb9 aa936e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import torch
from peft import PeftModel
import transformers
import gradio as gr
from scrape_website import process_webpages
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def evaluate(
instruction,
urls_string,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
content = process_webpages(urls=urls_string.split())
# avoid GPU memory overflow
with torch.no_grad():
torch.cuda.empty_cache()
prompt = generate_prompt(instruction, content)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
# avoid GPU memory overflow
torch.cuda.empty_cache()
return output.split("### Response:")[1].strip()
g = gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="FAQ", placeholder="Ask me anything about this website?"
),
gr.components.Textbox(
lines=2,
label="Website URLs",
placeholder="https://www.example.org/ https://www.example.com/",
),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
# gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
# gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
# gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
# gr.components.Slider(
# minimum=1, maximum=512, step=1, value=128, label="Max tokens"
# ),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="FAQ A Website",
examples=[
[
"Which actions can we take to reduce climate change?",
"https://www.imperial.ac.uk/stories/climate-action/",
],
[
"Which actions can we take to reduce climate change?",
"https://support.worldwildlife.org/site/SPageNavigator/ActionsToFightClimateChange.html",
],
]
# description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).",
)
g.queue(concurrency_count=1)
g.launch()
|