File size: 5,046 Bytes
aa936e5
 
 
 
a92d81b
5f6deb9
aa936e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a92d81b
aa936e5
 
 
 
 
 
a92d81b
aa936e5
 
 
 
5f6deb9
aa936e5
 
 
 
 
 
 
 
 
a92d81b
aa936e5
 
 
 
 
 
 
a92d81b
aa936e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f6deb9
 
 
 
 
a92d81b
aa936e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f6deb9
 
428da67
5f6deb9
 
 
 
 
aa936e5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from peft import PeftModel
import transformers
import gradio as gr
from scrape_website import process_webpages

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")

BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""


if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)


def evaluate(
    instruction,
    urls_string,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):
    content = process_webpages(urls=urls_string.split())
    # avoid GPU memory overflow
    with torch.no_grad():
        torch.cuda.empty_cache()
        prompt = generate_prompt(instruction, content)
        inputs = tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(device)
        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams,
            **kwargs,
        )
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
        s = generation_output.sequences[0]
        output = tokenizer.decode(s)
    # avoid GPU memory overflow
    torch.cuda.empty_cache()
    return output.split("### Response:")[1].strip()


g = gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="FAQ", placeholder="Ask me anything about this website?"
        ),
        gr.components.Textbox(
            lines=2,
            label="Website URLs",
            placeholder="https://www.example.org/ https://www.example.com/",
        ),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        # gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        # gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        # gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        # gr.components.Slider(
        #     minimum=1, maximum=512, step=1, value=128, label="Max tokens"
        # ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="FAQ A Website",
    examples=[
        [
            "Which actions can we take to reduce climate change?",
            "https://www.imperial.ac.uk/stories/climate-action/",
        ],
        [
            "Which actions can we take to reduce climate change?",
            "https://support.worldwildlife.org/site/SPageNavigator/ActionsToFightClimateChange.html",
        ],
    ]
    # description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).",
)
g.queue(concurrency_count=1)
g.launch()