Spaces:
Runtime error
Runtime error
File size: 1,589 Bytes
955b4cf 3694189 955b4cf 3694189 955b4cf 3694189 955b4cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import streamlit as st
import pandas as pd
st.set_page_config(page_title="CropSeek LLM", layout="wide")
st.title("🌱 CropSeek LLM")
st.subheader("AI-Powered Agricultural Decision Support System")
# Chat Interface
with st.expander("Live Crop Advisor", expanded=True):
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask about crop recommendations..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
response = f"Based on your inputs, I recommend **Maize** (85% confidence) and **Soybeans** (76% confidence)."
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# Data Analysis Section
with st.sidebar:
st.header("Farm Data Analysis")
uploaded_file = st.file_uploader("Upload Soil Data (CSV)", type="csv")
soil_type = st.selectbox("Soil Type", ["Loamy", "Clay", "Sandy"])
climate = st.selectbox("Climate Zone", ["Tropical", "Temperate", "Arid"])
if st.button("Analyze Conditions"):
sample_data = pd.DataFrame({
"Parameter": ["Soil Type", "Climate Zone", "Recommended Crops"],
"Value": [soil_type, climate, "Maize, Soybeans, Wheat"]
})
st.dataframe(sample_data, use_container_width=True)
st.markdown("---\n*Demo for Investor Preview | v1.2*") |