Spaces:
Build error
Build error
File size: 3,053 Bytes
b8f95bb 84b28fd b8f95bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
from transformers import pipeline
import pandas as pd
import numpy as np
import os
model_checkpoint = "penpen/novel-zh-en"
translator = pipeline("translation", model=model_checkpoint, max_time=7, num_beams=1)
default_dict = pd.read_csv("example_dictionary.csv", names=["Chinese", "English"])
examples = pd.read_csv("examples.csv", header = None)
def predict(text, df):
translation = ""
terms_dict = {chinese: english for chinese, english in zip(df["Chinese"].tolist(), df["English"].tolist())}
for key in terms_dict:
if key in text:
masking = "MASK"*len(key)
text = text.replace(key, "<TERM>" + masking+ "<GLOS>" + terms_dict[key] + "</GLOS>")
split_text = text.splitlines()
for text in split_text:
text = text.strip()
if text:
if len(text) < 512:
sentence = translator(text)[0]["translation_text"] + '\n\n'
translation+=sentence
print(split_text)
else:
for i in range(0,len(text),512):
if i+512>len(text):
sentence = translator(text[i:])[0]["translation_text"]
else:
sentence = translator(text[i:i+512])[0]["translation_text"]
translation+=sentence
return translation
def load_dict(file):
df = pd.read_csv(file.name, names=["Chinese", "English"])
return df, df
def search_dict(query, df):
if not query:
return df
mask = np.column_stack([df[col].str.contains(query, na=False) for col in df])
return df.loc[mask.any(axis=1)]
with gr.Blocks() as project:
dict_hidden = gr.State(default_dict)
gr.Markdown("<center><h1>Chinese Webnovel Translator</h1> A translator that is fine-tuned on Chinese Webnovels</center>")
with gr.Tab("Translator"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
translate_input = gr.Textbox(label="Chinese", lines=7, max_lines = 100, placeholder="Chinese...")
translate_button = gr.Button("Translate")
translate_hidden = gr.State("")
translate_output = gr.Textbox(label="English", lines=7, max_lines = 100, placeholder="English...")
example = gr.Examples(inputs = translate_input, examples=examples[0].tolist())
with gr.Tab("Proper Noun Dictionary"):
with gr.Row():
with gr.Column(scale=1, min_width=600):
dict_example_file = gr.File(label="Example Dictionary", value = "example_dictionary.csv")
dict_file = gr.File(interactive = True, label="Upload a custom dictionary (CSV File)")
dict_upload_button = gr.Button("Upload")
dict_search = gr.Textbox(label="Search Dictionary")
dict_search_button = gr.Button("Search")
dict_display = gr.Dataframe(value = default_dict, max_rows = 5, col_count=(2, "fixed"))
translate_button.click(predict, inputs=[translate_input, dict_hidden], outputs=translate_output)
dict_upload_button.click(load_dict, inputs=dict_file, outputs = [dict_hidden, dict_display])
dict_search_button.click(search_dict, inputs=[dict_search, dict_hidden], outputs = dict_display)
project.launch(debug=True) |