File size: 11,780 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import numpy as np
import cv2
import random
from torch import nn
import torch
from imgaug import augmenters as iaa
from lib.config import cfg
from plyfile import PlyData


def gaussian_radius(det_size, min_overlap=0.7):
    height, width = det_size

    a1 = 1
    b1 = (height + width)
    c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
    sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1)
    r1 = (b1 + sq1) / 2

    a2 = 4
    b2 = 2 * (height + width)
    c2 = (1 - min_overlap) * width * height
    sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2)
    r2 = (b2 + sq2) / 2

    a3 = 4 * min_overlap
    b3 = -2 * min_overlap * (height + width)
    c3 = (min_overlap - 1) * width * height
    if b3 ** 2 - 4 * a3 * c3 < 0:
        r3 = min(r1, r2)
    else:
        sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3)
        r3 = (b3 + sq3) / 2
    return min(r1, r2, r3)


def gaussian2D(shape, sigma=(1, 1), rho=0):
    if not isinstance(sigma, tuple):
        sigma = (sigma, sigma)
    sigma_x, sigma_y = sigma

    m, n = [(ss - 1.) / 2. for ss in shape]
    y, x = np.ogrid[-m:m+1, -n:n+1]

    energy = (x * x) / (sigma_x * sigma_x) - 2 * rho * x * y / (sigma_x * sigma_y) + (y * y) / (sigma_y * sigma_y)
    h = np.exp(-energy / (2 * (1 - rho * rho)))
    h[h < np.finfo(h.dtype).eps * h.max()] = 0
    return h


def draw_umich_gaussian(heatmap, center, radius, k=1):
    diameter = 2 * radius + 1
    gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6)

    x, y = int(center[0]), int(center[1])

    height, width = heatmap.shape[0:2]

    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)

    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right]
    if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug
        np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
    return heatmap


def draw_distribution(heatmap, center, sigma_x, sigma_y, rho, radius, k=1):
    diameter = 2 * radius + 1
    gaussian = gaussian2D((diameter, diameter), (sigma_x/3, sigma_y/3), rho)

    x, y = int(center[0]), int(center[1])

    height, width = heatmap.shape[0:2]

    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)

    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right]
    if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug
        np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
    return heatmap


def draw_heatmap_np(hm, point, box_size):
    """point: [x, y]"""
    # radius = gaussian_radius(box_size)
    radius = box_size[0]
    radius = max(0, int(radius))
    ct_int = np.array(point, dtype=np.int32)
    draw_umich_gaussian(hm, ct_int, radius)
    return hm


def get_edge(mask):
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    return mask - cv2.erode(mask, kernel)


def compute_gaussian_1d(dmap, sigma=1):
    """dmap: each entry means a distance"""
    prob = np.exp(-dmap / (2 * sigma * sigma))
    prob[prob < np.finfo(prob.dtype).eps * prob.max()] = 0
    return prob


def get_3rd_point(a, b):
    direct = a - b
    return b + np.array([-direct[1], direct[0]], dtype=np.float32)


def get_dir(src_point, rot_rad):
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)

    src_result = [0, 0]
    src_result[0] = src_point[0] * cs - src_point[1] * sn
    src_result[1] = src_point[0] * sn + src_point[1] * cs

    return src_result


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=np.array([0, 0], dtype=np.float32),
                         inv=0):
    if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
        scale = np.array([scale, scale], dtype=np.float32)

    scale_tmp = scale
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = get_dir([0, src_w * -0.5], rot_rad)
    dst_dir = np.array([0, dst_w * -0.5], np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5], np.float32) + dst_dir

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def affine_transform(pt, t):
    """pt: [n, 2]"""
    new_pt = np.dot(np.array(pt), t[:, :2].T) + t[:, 2]
    return new_pt


def homography_transform(pt, H):
    """pt: [n, 2]"""
    pt = np.concatenate([pt, np.ones([len(pt), 1])], axis=1)
    pt = np.dot(pt, H.T)
    pt = pt[..., :2] / pt[..., 2:]
    return pt


def get_border(border, size):
    i = 1
    while np.any(size - border // i <= border // i):
        i *= 2
    return border // i


def grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)


def lighting_(data_rng, image, alphastd, eigval, eigvec):
    alpha = data_rng.normal(scale=alphastd, size=(3, ))
    image += np.dot(eigvec, eigval * alpha)


def blend_(alpha, image1, image2):
    image1 *= alpha
    image2 *= (1 - alpha)
    image1 += image2


def saturation_(data_rng, image, gs, gs_mean, var):
    alpha = 1. + data_rng.uniform(low=-var, high=var)
    blend_(alpha, image, gs[:, :, None])


def brightness_(data_rng, image, gs, gs_mean, var):
    alpha = 1. + data_rng.uniform(low=-var, high=var)
    image *= alpha


def contrast_(data_rng, image, gs, gs_mean, var):
    alpha = 1. + data_rng.uniform(low=-var, high=var)
    blend_(alpha, image, gs_mean)


def color_aug(data_rng, image, eig_val, eig_vec):
    functions = [brightness_, contrast_, saturation_]
    random.shuffle(functions)

    gs = grayscale(image)
    gs_mean = gs.mean()
    for f in functions:
        f(data_rng, image, gs, gs_mean, 0.4)
    lighting_(data_rng, image, 0.1, eig_val, eig_vec)


def blur_aug(inp):
    if np.random.random() < 0.1:
        if np.random.random() < 0.8:
            inp = iaa.blur_gaussian_(inp, abs(np.clip(np.random.normal(0, 1.5), -3, 3)))
        else:
            inp = iaa.MotionBlur((3, 15), (-45, 45))(images=[inp])[0]


def gaussian_blur(image, sigma):
    from scipy import ndimage
    if image.ndim == 2:
        image[:, :] = ndimage.gaussian_filter(image[:, :], sigma, mode="mirror")
    else:
        nb_channels = image.shape[2]
        for channel in range(nb_channels):
            image[:, :, channel] = ndimage.gaussian_filter(image[:, :, channel], sigma, mode="mirror")


def inter_from_mask(pred, gt):
    pred = pred.astype(np.bool)
    gt = gt.astype(np.bool)
    intersection = np.logical_and(gt, pred).sum()
    return intersection


def draw_poly(mask, poly):
    cv2.fillPoly(mask, [poly], 255)
    return mask


def inter_from_poly(poly, gt, width, height):
    mask_small = np.zeros((1, height, width), dtype=np.uint8)
    mask_small = draw_poly(mask_small, poly)
    mask_gt = gt[..., 0]

    return inter_from_mask(mask_small, mask_gt)


def inter_from_polys(poly, w, h, gt_mask):
    inter = inter_from_poly(poly, gt_mask, w, h)
    if inter > 0:
        return False
    return True


def select_point(shape, poly, gt_mask):
    for i in range(cfg.max_iter):
        y = np.random.randint(shape[0] - poly['bbox'][3])
        x = np.random.randint(shape[1] - poly['bbox'][2])
        delta = np.array([poly['bbox'][0] - x, poly['bbox'][1] - y])
        poly_move = np.array(poly['poly']) - delta
        inter = inter_from_polys(poly_move, shape[1], shape[0], gt_mask)
        if inter:
            return x, y
    x, y = -1, -1
    return x, y


def transform_small_gt(poly, box, x, y):
    delta = np.array([poly['bbox'][0] - x, poly['bbox'][1] - y])
    poly['poly'] -= delta
    box[:2] -= delta
    box[2:] -= delta
    return poly, box


def get_mask_img(img, poly):
    mask = np.zeros(img.shape[:2])[..., np.newaxis]
    cv2.fillPoly(mask, [np.round(poly['poly']).astype(int)], 1)
    poly_img = img * mask
    mask = mask[..., 0]
    return poly_img, mask


def add_small_obj(img, gt_mask, poly, box, polys_gt):
    poly_img, mask = get_mask_img(img, poly)
    x, y = select_point(img.shape, poly.copy(), gt_mask)
    if x == -1:
        box = []
        return img, poly, box
    poly, box = transform_small_gt(poly, box, x, y)
    _, mask_ori = get_mask_img(img, poly)
    gt_mask += mask_ori[..., np.newaxis]
    img[mask_ori == 1] = poly_img[mask == 1]
    return img, poly, box[np.newaxis, :], gt_mask


def get_gt_mask(img, poly):
    mask = np.zeros(img.shape[:2])[..., np.newaxis]
    for i in range(len(poly)):
        for j in range(len(poly[i])):
            cv2.fillPoly(mask, [np.round(poly[i][j]['poly']).astype(int)], 1)
    return mask


def small_aug(img, poly, box, label, num):
    N = len(poly)
    gt_mask = get_gt_mask(img, poly)
    for i in range(N):
        if len(poly[i]) > 1:
            continue
        if poly[i][0]['area'] < 32*32:
            for k in range(num):
                img, poly_s, box_s, gt_mask = add_small_obj(img, gt_mask, poly[i][0].copy(), box[i].copy(), poly)
                if len(box_s) == 0:
                    continue
                poly.append([poly_s])
                box = np.concatenate((box, box_s))
                label.append(label[i])
    return img, poly, box, label


def truncated_normal(mean, sigma, low, high, data_rng=None):
    if data_rng is None:
        data_rng = np.random.RandomState()
    value = data_rng.normal(mean, sigma)
    return np.clip(value, low, high)


def _nms(heat, kernel=3):
    """heat: [b, c, h, w]"""
    pad = (kernel - 1) // 2

    # find the local minimum of heat within the neighborhood kernel x kernel
    hmax = nn.functional.max_pool2d(
        heat, (kernel, kernel), stride=1, padding=pad)
    keep = (hmax == heat).float()
    return heat * keep


def _gather_feat(feat, ind, mask=None):
    dim = feat.size(2)
    ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
    feat = feat.gather(1, ind)
    if mask is not None:
        mask = mask.unsqueeze(2).expand_as(feat)
        feat = feat[mask]
        feat = feat.view(-1, dim)
    return feat


def _topk(scores, K=40):
    batch, cat, height, width = scores.size()

    topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K)

    topk_inds = topk_inds % (height * width)
    topk_ys = (topk_inds / width).int().float()
    topk_xs = (topk_inds % width).int().float()

    topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K)
    topk_clses = (topk_ind / K).int()
    topk_inds = _gather_feat(
        topk_inds.view(batch, -1, 1), topk_ind).view(batch, K)
    topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K)
    topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K)

    return topk_score, topk_inds, topk_clses, topk_ys, topk_xs


def clip_to_image(bbox, h, w):
    bbox[..., :2] = torch.clamp(bbox[..., :2], min=0)
    bbox[..., 2] = torch.clamp(bbox[..., 2], max=w-1)
    bbox[..., 3] = torch.clamp(bbox[..., 3], max=h-1)
    return bbox


def load_ply(path):
    ply = PlyData.read(path)
    data = ply.elements[0].data
    x, y, z = data['x'], data['y'], data['z']
    model = np.stack([x, y, z], axis=-1)
    return model