Spaces:
Sleeping
Sleeping
File size: 21,309 Bytes
ec9a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import torch
import torch.nn.functional as F
import torchvision as tv
from torch.utils.data import Dataset
import numpy as np
import glob
import math
import os
import random
import cv2
from skimage import io
from pytorch3d.renderer.cameras import look_at_view_transform
from pytorch3d.transforms import so3_exponential_map
from GHA.lib.utils.graphics_utils import getWorld2View2, getProjectionMatrix
def CropImage(left_up, crop_size, image=None, K=None):
crop_size = np.array(crop_size).astype(np.int32)
left_up = np.array(left_up).astype(np.int32)
if not K is None:
K[0:2,2] = K[0:2,2] - np.array(left_up)
if not image is None:
if left_up[0] < 0:
image_left = np.zeros([image.shape[0], -left_up[0], image.shape[2]], dtype=np.uint8)
image = np.hstack([image_left, image])
left_up[0] = 0
if left_up[1] < 0:
image_up = np.zeros([-left_up[1], image.shape[1], image.shape[2]], dtype=np.uint8)
image = np.vstack([image_up, image])
left_up[1] = 0
if crop_size[0] + left_up[0] > image.shape[1]:
image_right = np.zeros([image.shape[0], crop_size[0] + left_up[0] - image.shape[1], image.shape[2]], dtype=np.uint8)
image = np.hstack([image, image_right])
if crop_size[1] + left_up[1] > image.shape[0]:
image_down = np.zeros([crop_size[1] + left_up[1] - image.shape[0], image.shape[1], image.shape[2]], dtype=np.uint8)
image = np.vstack([image, image_down])
image = image[left_up[1]:left_up[1]+crop_size[1], left_up[0]:left_up[0]+crop_size[0], :]
return image, K
def ResizeImage(target_size, source_size, image=None, K=None):
if not K is None:
K[0,:] = (target_size[0] / source_size[0]) * K[0,:]
K[1,:] = (target_size[1] / source_size[1]) * K[1,:]
if not image is None:
image = cv2.resize(image, dsize=target_size)
return image, K
class MeshDataset(Dataset):
def __init__(self, cfg):
super(MeshDataset, self).__init__()
self.dataroot = cfg.dataroot
self.camera_ids = cfg.camera_ids
self.original_resolution = cfg.original_resolution
self.resolution = cfg.resolution
self.num_sample_view = cfg.num_sample_view
self.samples = []
image_folder = os.path.join(self.dataroot, 'images')
param_folder = os.path.join(self.dataroot, 'params')
camera_folder = os.path.join(self.dataroot, 'cameras')
frames = os.listdir(image_folder)
self.num_exp_id = 0
for frame in frames:
image_paths = [os.path.join(image_folder, frame, 'image_%s.jpg' % camera_id) for camera_id in self.camera_ids]
mask_paths = [os.path.join(image_folder, frame, 'mask_%s.jpg' % camera_id) for camera_id in self.camera_ids]
visible_paths = [os.path.join(image_folder, frame, 'window_%s.jpg' % camera_id) for camera_id in self.camera_ids]
camera_paths = [os.path.join(image_folder, frame, 'camera_%s.npz' % camera_id) for camera_id in self.camera_ids]
param_path = os.path.join(param_folder, frame, 'params.npz')
landmarks_3d_path = os.path.join(param_folder, frame, 'lmk_3d.npy')
vertices_path = os.path.join(param_folder, frame, 'vertices.npy')
sample = (image_paths, mask_paths, visible_paths, camera_paths, param_path, landmarks_3d_path, vertices_path, self.num_exp_id)
self.samples.append(sample)
self.num_exp_id += 1
init_landmarks_3d = torch.from_numpy(np.load(os.path.join(param_folder, frames[0], 'lmk_3d.npy'))).float()
init_vertices = torch.from_numpy(np.load(os.path.join(param_folder, frames[0], 'vertices.npy'))).float()
init_landmarks_3d = torch.cat([init_landmarks_3d, init_vertices[::100]], 0)
param = np.load(os.path.join(param_folder, frames[0], 'params.npz'))
pose = torch.from_numpy(param['pose'][0]).float()
R = so3_exponential_map(pose[None, :3])[0]
T = pose[None, 3:]
S = torch.from_numpy(param['scale']).float()
self.init_landmarks_3d_neutral = (torch.matmul(init_landmarks_3d- T, R)) / S
def get_item(self, index):
data = self.__getitem__(index)
return data
def __getitem__(self, index):
sample = self.samples[index]
images = []
masks = []
visibles = []
views = random.sample(range(len(self.camera_ids)), self.num_sample_view)
for view in views:
image_path = sample[0][view]
image = cv2.resize(io.imread(image_path), (self.resolution, self.resolution))
image = torch.from_numpy(image / 255).permute(2, 0, 1).float()
images.append(image)
mask_path = sample[1][view]
mask = cv2.resize(io.imread(mask_path), (self.resolution, self.resolution))
if len(mask.shape) == 3:
mask = mask[:, :, 0:1]
elif len(mask.shape) == 2:
mask = mask[:, :, None]
mask = torch.from_numpy(mask / 255).permute(2, 0, 1).float()
masks.append(mask)
visible_path = sample[2][view]
if os.path.exists(visible_path):
visible = cv2.resize(io.imread(visible_path), (self.resolution, self.resolution))
if len(mask.shape) == 3:
visible = visible[:, :, 0:1]
elif len(mask.shape) == 2:
visible = visible[:, :, None]
visible = torch.from_numpy(visible / 255).permute(2, 0, 1).float()
else:
visible = torch.ones_like(image)
visibles.append(visible)
images = torch.stack(images)
masks = torch.stack(masks)
images = images * masks
visibles = torch.stack(visibles)
cameras = [np.load(sample[3][view]) for view in views]
intrinsics = torch.stack([torch.from_numpy(camera['intrinsic']).float() for camera in cameras])
extrinsics = torch.stack([torch.from_numpy(camera['extrinsic']).float() for camera in cameras])
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * 2 / self.original_resolution
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * 2 / self.original_resolution - 1
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * 2 / self.original_resolution
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * 2 / self.original_resolution - 1
param_path = sample[4]
param = np.load(param_path)
pose = torch.from_numpy(param['pose'][0]).float()
scale = torch.from_numpy(param['scale']).float()
exp_coeff = torch.from_numpy(param['exp_coeff'][0]).float()
landmarks_3d_path = sample[5]
landmarks_3d = torch.from_numpy(np.load(landmarks_3d_path)).float()
vertices_path = sample[6]
vertices = torch.from_numpy(np.load(vertices_path)).float()
landmarks_3d = torch.cat([landmarks_3d, vertices[::100]], 0)
exp_id = sample[7]
return {
'images': images,
'masks': masks,
'visibles': visibles,
'pose': pose,
'scale': scale,
'exp_coeff': exp_coeff,
'landmarks_3d': landmarks_3d,
'intrinsics': intrinsics,
'extrinsics': extrinsics,
'exp_id': exp_id}
def __len__(self):
return len(self.samples)
class GaussianDataset(Dataset):
def __init__(self, cfg):
super(GaussianDataset, self).__init__()
self.dataroot = cfg.dataroot
self.camera_ids = cfg.camera_ids
self.original_resolution = cfg.original_resolution
self.resolution = cfg.resolution
self.samples = []
image_folder = os.path.join(self.dataroot, 'images')
param_folder = os.path.join(self.dataroot, 'params')
camera_folder = os.path.join(self.dataroot, 'cameras')
frames = os.listdir(image_folder)
self.num_exp_id = 0
for frame in frames:
image_paths = [os.path.join(image_folder, frame, 'image_%s.jpg' % camera_id) for camera_id in self.camera_ids]
mask_paths = [os.path.join(image_folder, frame, 'mask_%s.jpg' % camera_id) for camera_id in self.camera_ids]
visible_paths = [os.path.join(image_folder, frame, 'window_%s.jpg' % camera_id) for camera_id in self.camera_ids]
camera_paths = [os.path.join(image_folder, frame, 'camera_%s.npz' % camera_id) for camera_id in self.camera_ids]
param_path = os.path.join(param_folder, frame, 'params.npz')
landmarks_3d_path = os.path.join(param_folder, frame, 'lmk_3d.npy')
vertices_path = os.path.join(param_folder, frame, 'vertices.npy')
sample = (image_paths, mask_paths, visible_paths, camera_paths, param_path, landmarks_3d_path, vertices_path, self.num_exp_id)
self.samples.append(sample)
self.num_exp_id += 1
def get_item(self, index):
data = self.__getitem__(index)
return data
def __getitem__(self, index):
sample = self.samples[index]
view = random.sample(range(len(self.camera_ids)), 1)[0]
image_path = sample[0][view]
image = cv2.resize(io.imread(image_path), (self.original_resolution, self.original_resolution)) / 255
mask_path = sample[1][view]
mask = cv2.resize(io.imread(mask_path), (self.original_resolution, self.original_resolution)) / 255
if len(mask.shape) == 3:
mask = mask[:, :, 0:1]
elif len(mask.shape) == 2:
mask = mask[:, :, None]
image = image * mask + (1 - mask)
visible_path = sample[2][view]
if os.path.exists(visible_path):
visible = cv2.resize(io.imread(visible_path), (self.original_resolution, self.original_resolution)) / 255
if len(visible.shape) == 3:
visible = visible[:, :, 0:1]
elif len(mask.shape) == 2:
visible = visible[:, :, None]
else:
visible = np.ones_like(image)
camera = np.load(sample[3][view])
extrinsic = torch.from_numpy(camera['extrinsic']).float()
R = extrinsic[:3,:3].t()
T = extrinsic[:3, 3]
intrinsic = camera['intrinsic']
if np.abs(intrinsic[0, 2] - self.original_resolution / 2) > 1 or np.abs(intrinsic[1, 2] - self.original_resolution / 2) > 1:
left_up = np.around(intrinsic[0:2, 2] - np.array([self.original_resolution / 2, self.original_resolution / 2])).astype(np.int32)
_, intrinsic = CropImage(left_up, (self.original_resolution, self.original_resolution), K=intrinsic)
image, _ = CropImage(left_up, (self.original_resolution, self.original_resolution), image=image)
mask, _ = CropImage(left_up, (self.original_resolution, self.original_resolution), image=mask)
visible, _ = CropImage(left_up, (self.original_resolution, self.original_resolution), image=visible)
intrinsic[0, 0] = intrinsic[0, 0] * 2 / self.original_resolution
intrinsic[0, 2] = intrinsic[0, 2] * 2 / self.original_resolution - 1
intrinsic[1, 1] = intrinsic[1, 1] * 2 / self.original_resolution
intrinsic[1, 2] = intrinsic[1, 2] * 2 / self.original_resolution - 1
intrinsic = torch.from_numpy(intrinsic).float()
image = torch.from_numpy(cv2.resize(image, (self.resolution, self.resolution))).permute(2, 0, 1).float()
mask = torch.from_numpy(cv2.resize(mask, (self.resolution, self.resolution)))[None].float()
visible = torch.from_numpy(cv2.resize(visible, (self.resolution, self.resolution)))[None].float()
image_coarse = F.interpolate(image[None], scale_factor=0.25)[0]
mask_coarse = F.interpolate(mask[None], scale_factor=0.25)[0]
visible_coarse = F.interpolate(visible[None], scale_factor=0.25)[0]
fovx = 2 * math.atan(1 / intrinsic[0, 0])
fovy = 2 * math.atan(1 / intrinsic[1, 1])
world_view_transform = torch.tensor(getWorld2View2(R.numpy(), T.numpy())).transpose(0, 1)
projection_matrix = getProjectionMatrix(znear=0.01, zfar=100, fovX=fovx, fovY=fovy).transpose(0,1)
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0)
camera_center = world_view_transform.inverse()[3, :3]
param_path = sample[4]
param = np.load(param_path)
pose = torch.from_numpy(param['pose'][0]).float()
scale = torch.from_numpy(param['scale']).float()
exp_coeff = torch.from_numpy(param['exp_coeff'][0]).float()
landmarks_3d_path = sample[5]
landmarks_3d = torch.from_numpy(np.load(landmarks_3d_path)).float()
vertices_path = sample[6]
vertices = torch.from_numpy(np.load(vertices_path)).float()
landmarks_3d = torch.cat([landmarks_3d, vertices[::100]], 0)
exp_id = torch.tensor(sample[7]).long()
return {
'images': image,
'masks': mask,
'visibles': visible,
'images_coarse': image_coarse,
'masks_coarse': mask_coarse,
'visibles_coarse': visible_coarse,
'pose': pose,
'scale': scale,
'exp_coeff': exp_coeff,
'landmarks_3d': landmarks_3d,
'exp_id': exp_id,
'extrinsics': extrinsic,
'intrinsics': intrinsic,
'fovx': fovx,
'fovy': fovy,
'world_view_transform': world_view_transform,
'projection_matrix': projection_matrix,
'full_proj_transform': full_proj_transform,
'camera_center': camera_center}
def __len__(self):
return len(self.samples)
class ReenactmentDataset(Dataset):
def __init__(self, cfg):
super(ReenactmentDataset, self).__init__()
self.dataroot = cfg.dataroot
self.original_resolution = cfg.original_resolution
self.resolution = cfg.resolution
self.freeview = cfg.freeview
self.Rot_z = torch.eye(3)
self.Rot_z[0,0] = -1.0
self.Rot_z[1,1] = -1.0
self.samples = []
image_paths = sorted(glob.glob(os.path.join(self.dataroot, cfg.image_files)))
param_paths = sorted(glob.glob(os.path.join(self.dataroot, cfg.param_files)))
# assert len(image_paths) == len(param_paths)
self.samples = []
# for i, image_path in enumerate(image_paths):
# param_path = param_paths[i]
# if os.path.exists(image_path) and os.path.exists(param_path):
# sample = (image_path, param_path)
# self.samples.append(sample)
exp_path = cfg.exp_path
self.exp_coeff = np.load(exp_path)
for i, param_path in enumerate(param_paths):
image_path = image_paths[0]
if os.path.exists(image_path) and os.path.exists(param_path):
sample = (image_path, param_path)
self.samples.append(sample)
# add to length of exp_path
while len(self.samples) < self.exp_coeff.shape[0]:
pack = (image_paths[0], param_paths[0])
self.samples.append(pack)
if os.path.exists(cfg.pose_code_path):
self.pose_code = torch.from_numpy(np.load(cfg.pose_code_path)['pose'][0]).float()
else:
self.pose_code = None
self.extrinsic = torch.tensor([[1.0000, 0.0000, 0.0000, 0.0000],
[0.0000, -1.0000, 0.0000, 0.0000],
[0.0000, 0.0000, -1.0000, 1.0000]]).float()
self.intrinsic = torch.tensor([[self.original_resolution * 3.5, 0.0000e+00, self.original_resolution / 2],
[0.0000e+00, self.original_resolution * 3.5, self.original_resolution / 2],
[0.0000e+00, 0.0000e+00, 1.0000e+00]]).float()
if os.path.exists(cfg.camera_path):
camera = np.load(cfg.camera_path)
self.extrinsic = torch.from_numpy(camera['extrinsic']).float()
if not self.freeview:
self.intrinsic = torch.from_numpy(camera['intrinsic']).float()
self.R = self.extrinsic[:3,:3].t()
self.T = self.extrinsic[:3, 3]
self.intrinsic[0, 0] = self.intrinsic[0, 0] * 2 / self.original_resolution
self.intrinsic[0, 2] = self.intrinsic[0, 2] * 2 / self.original_resolution - 1
self.intrinsic[1, 1] = self.intrinsic[1, 1] * 2 / self.original_resolution
self.intrinsic[1, 2] = self.intrinsic[1, 2] * 2 / self.original_resolution - 1
self.fovx = 2 * math.atan(1 / self.intrinsic[0, 0])
self.fovy = 2 * math.atan(1 / self.intrinsic[1, 1])
self.world_view_transform = torch.tensor(getWorld2View2(self.R.numpy(), self.T.numpy())).transpose(0, 1)
self.projection_matrix = getProjectionMatrix(znear=0.01, zfar=100, fovX=self.fovx, fovY=self.fovy).transpose(0,1)
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
def update_camera(self, index):
elev = math.sin(index / 20) * 8 + 0
azim = math.cos(index / 20) * 45 - 0
R, T = look_at_view_transform(dist=1.2, elev=elev, azim=azim, at=((0.0, 0.0, 0.05),))
R = torch.matmul(self.Rot_z, R[0].t())
self.extrinsic = torch.cat([R, T.t()], -1)
self.R = self.extrinsic[:3,:3].t()
self.T = self.extrinsic[:3, 3]
self.world_view_transform = torch.tensor(getWorld2View2(self.R.numpy(), self.T.numpy())).transpose(0, 1)
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
self.camera_center = self.world_view_transform.inverse()[3, :3]
def get_item(self, index):
data = self.__getitem__(index)
return data
def __getitem__(self, index):
if self.freeview:
self.update_camera(index)
sample = self.samples[index]
image_path = sample[0]
image = torch.from_numpy(cv2.resize(io.imread(image_path), (self.resolution, self.resolution)) / 255).permute(2, 0, 1).float()
param_path = sample[1]
param = np.load(param_path)
pose = torch.from_numpy(param['pose'][0]).float()
scale = torch.from_numpy(param['scale']).float()
exp_coeff = torch.from_numpy(param['exp_coeff'][0]).float()
id_coeff = torch.from_numpy(param['id_coeff'])[0].float()
# load new exp_coeff
# exp_coeff = np.load('/home/pengc02/pengcheng/projects/gaussian_avatar/ag_gha/data/face_pose/thu.npy')
# exp_coeff = np.load('/home/pengc02/pengcheng/projects/gaussian_avatar/avatar_final/data/1004_slow_exp/auto.npy')
# exp_coeff = np.load('/home/pengc02/pengcheng/projects/gaussian_avatar/avatar_final/data/0930_sing/singc.npy')
# exp_coeff = np.load('/home/pengc02/pengcheng/projects/gaussian_avatar/avatar_final/data/train_audio_and_exp/train_exp.npy')
exp_coeff = self.exp_coeff
exp_coeff = torch.from_numpy(exp_coeff[index]).float()
# add mid exp_coeff
mid_exp_coeff = np.load('/home/pengc02/pengcheng/projects/gaussian_avatar/ag_gha/data/face0313all/params/0005/params.npz')
mid_exp_coeff = mid_exp_coeff['exp_coeff'][0]
mid_exp_coeff = torch.from_numpy(mid_exp_coeff).float()
# exp_coeff = exp_coeff+mid_exp_coeff
if self.pose_code is not None:
pose_code = self.pose_code
else:
pose_code = pose
return {
'images': image,
'pose': pose,
'scale': scale,
'id_coeff': id_coeff,
'exp_coeff': exp_coeff,
'pose_code': pose_code,
'extrinsics': self.extrinsic,
'intrinsics': self.intrinsic,
'fovx': self.fovx,
'fovy': self.fovy,
'world_view_transform': self.world_view_transform,
'projection_matrix': self.projection_matrix,
'full_proj_transform': self.full_proj_transform,
'camera_center': self.camera_center}
def __len__(self):
return len(self.samples) |