File size: 11,145 Bytes
7648567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import copy
import math
import time, random

import torch
import numpy as np
import cv2
import smplx
import pickle
import trimesh
import os, glob
import argparse

from .lib.networks.faceverse_torch import FaceVerseModel


def estimate_rigid_transformation(src, tgt):
    src = src.transpose()
    tgt = tgt.transpose()
    mu1, mu2 = src.mean(axis=1, keepdims=True), tgt.mean(axis=1, keepdims=True)
    X1, X2 = src - mu1, tgt - mu2

    K = X1.dot(X2.T)
    U, s, Vh = np.linalg.svd(K)
    V = Vh.T
    Z = np.eye(U.shape[0])
    Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
    R = V.dot(Z.dot(U.T))
    t = mu2 - R.dot(mu1)

    orient, _ = cv2.Rodrigues(R)
    orient = orient.reshape([-1])
    t = t.reshape([-1])
    return orient, t


def load_smpl_beta(body_fitting_result_fpath):
    if os.path.isdir(body_fitting_result_fpath):
        body_fitting_result = torch.load(
            os.path.join(body_fitting_result_fpath, 'checkpoints/latest.pt'), map_location='cpu')
        betas = body_fitting_result['betas']['weight']
    elif body_fitting_result_fpath.endswith('.pt'):
        body_fitting_result = torch.load(body_fitting_result_fpath, map_location='cpu')
        betas = body_fitting_result['beta'].reshape(1, -1)
    elif body_fitting_result_fpath.endswith('.npz'):
        body_fitting_result = np.load(body_fitting_result_fpath)
        betas = body_fitting_result['betas'].reshape(1, -1)
        betas = torch.from_numpy(betas.astype(np.float32))
    else:
        raise ValueError('Unknown body fitting result file format: {}'.format(body_fitting_result_fpath))
    return betas


def load_face_id_scale_param(face_fitting_result_fpath):
    if os.path.isfile(face_fitting_result_fpath):
        face_fitting_result = dict(np.load(face_fitting_result_fpath))
        id_tensor = face_fitting_result['id_coeff'].astype(np.float32)
        scale_tensor = face_fitting_result['scale'].astype(np.float32)
        id_tensor = torch.from_numpy(id_tensor).reshape(1, -1)
        scale_tensor = torch.from_numpy(scale_tensor).reshape(1, -1)
    else:
        param_paths = sorted(glob.glob(os.path.join(face_fitting_result_fpath, '*', 'params.npz')))
        param = np.load(param_paths[0])
        id_tensor = torch.from_numpy(param['id_coeff']).reshape(1, -1)
        scale_tensor = torch.from_numpy(param['scale']).reshape(1, 1)

    return id_tensor, scale_tensor


def calc_smplx2faceverse(body_fitting_result_fpath, face_fitting_result_fpath, output_dir):
    device = torch.device('cuda')
    os.makedirs(output_dir, exist_ok=True)

    betas = load_smpl_beta(body_fitting_result_fpath)
    id_tensor, scale_tensor = load_face_id_scale_param(face_fitting_result_fpath)

    smpl = smplx.SMPLX(model_path='./AnimatableGaussians/smpl_files/smplx', gender='neutral',
                       use_pca=True, num_pca_comps=45, flat_hand_mean=True, batch_size=1)
    flame = smplx.FLAME(model_path='./AnimatableGaussians/smpl_files/FLAME2019', gender='neutral', batch_size=1)

    pose = np.zeros([63], dtype=np.float32)

    pose = torch.from_numpy(pose).unsqueeze(0)
    smpl_out = smpl(body_pose=pose, betas=betas)
    verts = smpl_out.vertices.detach().cpu().squeeze(0).numpy()
    flame_out = flame()
    verts_flame = flame_out.vertices.detach().cpu().squeeze(0).numpy()

    smplx2flame_data = np.load('./data/smpl_models/smplx_mano_flame_correspondences/SMPL-X__FLAME_vertex_ids.npy')
    verts_flame_on_smplx = verts[smplx2flame_data]

    orient, t = estimate_rigid_transformation(verts_flame, verts_flame_on_smplx)
    R, _ = cv2.Rodrigues(orient)

    rel_transf = np.eye(4)
    rel_transf[:3, :3] = R
    rel_transf[:3, 3] = t.reshape(-1)
    np.save('%s/flame_to_smplx.npy' % (output_dir), rel_transf.astype(np.float32))

    # TODO: DELETE ME
    with open('./debug/debug_verts_smplx.obj', 'w') as fp:
        for v in verts:
            fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
    with open('./debug/debug_verts_flame_in_smplx.obj', 'w') as fp:
        for v in np.matmul(verts_flame, R.transpose()) + t.reshape([1, 3]):
            fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))

    # align Faceverse to T-pose FLAME on SMPL-X
    faceverse_mesh = trimesh.load_mesh('./data/smpl_models/faceverse2flame/faceverse_icp.obj', process=False)
    verts_faceverse_ref = np.matmul(np.asarray(faceverse_mesh.vertices), R.transpose()) + t.reshape(1, 3)

    # TODO: DELETE ME
    with open('./debug/debug_verts_faceverse_ref.obj', 'w') as fp:
        for v in verts_faceverse_ref:
            fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))

    model_dict = np.load('./data/faceverse_models/faceverse_simple_v2.npy', allow_pickle=True).item()
    faceverse_model = FaceVerseModel(model_dict, batch_size=1)
    faceverse_model.init_coeff_tensors()
    coeffs = faceverse_model.get_packed_tensors()
    fv_out = faceverse_model.forward(coeffs=coeffs)
    verts_faceverse = fv_out['v'].squeeze(0).detach().cpu().numpy()

    # calculate the relative transformation between FLAME in canonical pose and its position on SMPL-X
    orient, t = estimate_rigid_transformation(verts_faceverse, verts_faceverse_ref)
    orient = torch.from_numpy(orient.astype(np.float32)).unsqueeze(0).to(device)
    t = torch.from_numpy(t.astype(np.float32)).unsqueeze(0).to(device)

    # optimize the Faceverse to fit SMPL-X
    faceverse_model.init_coeff_tensors(
        rot_coeff=orient, trans_coeff=t, id_coeff=id_tensor.to(device), scale_coeff=scale_tensor.to(device))
    nonrigid_optim_params = [
        faceverse_model.get_exp_tensor(), faceverse_model.get_rot_tensor(), faceverse_model.get_trans_tensor(),
        # faceverse_model.get_scale_tensor(), faceverse_model.get_id_tensor()
    ]
    nonrigid_optimizer = torch.optim.Adam(nonrigid_optim_params, lr=1e-1)
    verts_faceverse_ref = torch.from_numpy(verts_faceverse_ref.astype(np.float32)).to(device).unsqueeze(0)
    for iter in range(1000):
        coeffs = faceverse_model.get_packed_tensors()
        fv_out = faceverse_model.forward(coeffs=coeffs)
        verts_pred = fv_out['v']
        loss = torch.mean(torch.square(verts_pred - verts_faceverse_ref))
        if iter % 10 == 0:
            print(loss.item())
        nonrigid_optimizer.zero_grad()
        loss.backward()
        nonrigid_optimizer.step()

    np.savez('%s/faceverse_param_to_smplx.npz' % (output_dir), {
        'id': faceverse_model.get_id_tensor().detach().cpu().numpy(),
        'exp': faceverse_model.get_exp_tensor().detach().cpu().numpy(),
        'rot': faceverse_model.get_rot_tensor().detach().cpu().numpy(),
        'transl': faceverse_model.get_trans_tensor().detach().cpu().numpy(),
        'scale': faceverse_model.get_scale_tensor().detach().cpu().numpy(),
    })

    # calculate SMPLX to faceverse space transformation (without scale)
    orient = faceverse_model.get_rot_tensor().detach().cpu().numpy()
    transl = faceverse_model.get_trans_tensor().detach().cpu().numpy()
    rotmat, _ = cv2.Rodrigues(orient)
    transform_mat = np.eye(4)
    transform_mat[:3, :3] = rotmat
    transform_mat[:3, 3] = transl
    transform_mat = np.linalg.inv(transform_mat)
    np.save('%s/smplx_to_faceverse_space.npy' % (output_dir), transform_mat.astype(np.float32))

    # calculate SMPLX to faceverse distance
    dists = []
    verts_faceverse_ref = verts_faceverse_ref.detach().cpu().numpy()
    for v in verts:
        dist = np.linalg.norm(v.reshape(1, 3) - verts_faceverse_ref, axis=-1)
        dist = np.min(dist)
        dists.append(dist)
    dists = np.asarray(dists)
    np.save('%s/smplx_verts_to_faceverse_dist.npy' % (output_dir), dists.astype(np.float32))

    # sample nodes on facial area
    dists_ = np.ones_like(dists)
    smplx_topo_new = np.load('./data/smpl_models/smplx_topo_new.npy')
    valid_vids = set(smplx_topo_new.reshape([-1]).tolist())
    dists_[np.asarray(list(valid_vids))] = dists[np.asarray(list(valid_vids))]

    vids_on_face = np.where(dists_ < 0.01)[0]
    verts_on_face = verts[vids_on_face]
    geod_dist_mat = np.linalg.norm(np.expand_dims(verts_on_face, axis=0) - np.expand_dims(verts_on_face, axis=1),
                                   axis=2)
    nodes = [0]  # nose
    dist_nodes_to_rest_points = geod_dist_mat[nodes[0]]
    for i in range(1, 256):
        idx = np.argmax(dist_nodes_to_rest_points)
        nodes.append(idx)
        new_dist = geod_dist_mat[idx]
        update_flag = new_dist < dist_nodes_to_rest_points
        dist_nodes_to_rest_points[update_flag] = new_dist[update_flag]

    # with open('./debug/debug_face_nodes.obj', 'w') as fp:
    #     for n in verts_on_face[np.asarray(nodes)]:
    #         fp.write('v %f %f %f\n' % (n[0], n[1], n[2]))
    vids_on_faces_sampled = vids_on_face[np.asarray(nodes)]
    vids_on_faces_sampled = np.ascontiguousarray(vids_on_faces_sampled).astype(np.int32)
    np.save('%s/vids_on_faces_sampled.npy' % (output_dir), vids_on_faces_sampled)

    # test SMPLX-to-faceverse space transformation (without scale)
    verts_smpl_in_faceverse = np.matmul(verts, transform_mat[:3, :3].transpose()) + \
        transform_mat[:3, 3].reshape(1, 3)
    with open('./debug/debug_verts_smpl_in_faceverse.obj', 'w') as fp:
        for v in verts_smpl_in_faceverse:
            fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))

    # save personalized, canonical faceverse model
    faceverse_model.init_coeff_tensors(id_coeff=id_tensor.to(device), scale_coeff=scale_tensor.to(device))
    coeffs = faceverse_model.get_packed_tensors()
    fv_out = faceverse_model.forward(coeffs=coeffs)
    verts_faceverse = fv_out['v'].squeeze(0).detach().cpu().numpy()
    with open('./debug/debug_verts_faceverse.obj', 'w') as fp:
        for v in verts_faceverse:
            fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))


if __name__ == '__main__':
    # body_fitting_result_dir = 'D:/UpperBodyAvatar/code/smplfitting_multiview_sequence_smplx/results/Shuangqing/zzr_fullbody_20221130_01_2k/whole.pt'
    # face_fitting_result_dir = 'D:\\UpperBodyAvatar\\data\\Shuangqing\\zzr_face_20221130_01_2k\\faceverse_params'
    #
    # output_dir = './data/faceverse/'
    # result_suffix = 'shuangqing_zzr'

    # body_fitting_result_dir = 'D:/Product/FullAppRelease/smplfitting_multiview_sequence_smplx/results/body_data_model_20231224/whole.pt'
    # face_fitting_result_dir = 'D:/Product/data/HuiyingCenter/20231224_model/model_20231224_face_data/faceverse_params'
    #
    # output_dir = './data/faceverse/'
    # result_suffix = 'huiyin_model20231224'

    body_fitting_result_dir = 'D:/Product/FullAppRelease/smplfitting_multiview_sequence_smplx/results/body_data_male20230530_betterhand/whole.pt'
    face_fitting_result_dir = 'D:/Product/data/HuiyingCenter/20230531_models/male20230530_face_data/faceverse_params'

    output_dir = './data/body_face_stitching/huiyin_male20230530'

    calc_smplx2faceverse(body_fitting_result_dir, face_fitting_result_dir, output_dir)