Spaces:
Running
Running
File size: 11,145 Bytes
7648567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import copy
import math
import time, random
import torch
import numpy as np
import cv2
import smplx
import pickle
import trimesh
import os, glob
import argparse
from .lib.networks.faceverse_torch import FaceVerseModel
def estimate_rigid_transformation(src, tgt):
src = src.transpose()
tgt = tgt.transpose()
mu1, mu2 = src.mean(axis=1, keepdims=True), tgt.mean(axis=1, keepdims=True)
X1, X2 = src - mu1, tgt - mu2
K = X1.dot(X2.T)
U, s, Vh = np.linalg.svd(K)
V = Vh.T
Z = np.eye(U.shape[0])
Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
R = V.dot(Z.dot(U.T))
t = mu2 - R.dot(mu1)
orient, _ = cv2.Rodrigues(R)
orient = orient.reshape([-1])
t = t.reshape([-1])
return orient, t
def load_smpl_beta(body_fitting_result_fpath):
if os.path.isdir(body_fitting_result_fpath):
body_fitting_result = torch.load(
os.path.join(body_fitting_result_fpath, 'checkpoints/latest.pt'), map_location='cpu')
betas = body_fitting_result['betas']['weight']
elif body_fitting_result_fpath.endswith('.pt'):
body_fitting_result = torch.load(body_fitting_result_fpath, map_location='cpu')
betas = body_fitting_result['beta'].reshape(1, -1)
elif body_fitting_result_fpath.endswith('.npz'):
body_fitting_result = np.load(body_fitting_result_fpath)
betas = body_fitting_result['betas'].reshape(1, -1)
betas = torch.from_numpy(betas.astype(np.float32))
else:
raise ValueError('Unknown body fitting result file format: {}'.format(body_fitting_result_fpath))
return betas
def load_face_id_scale_param(face_fitting_result_fpath):
if os.path.isfile(face_fitting_result_fpath):
face_fitting_result = dict(np.load(face_fitting_result_fpath))
id_tensor = face_fitting_result['id_coeff'].astype(np.float32)
scale_tensor = face_fitting_result['scale'].astype(np.float32)
id_tensor = torch.from_numpy(id_tensor).reshape(1, -1)
scale_tensor = torch.from_numpy(scale_tensor).reshape(1, -1)
else:
param_paths = sorted(glob.glob(os.path.join(face_fitting_result_fpath, '*', 'params.npz')))
param = np.load(param_paths[0])
id_tensor = torch.from_numpy(param['id_coeff']).reshape(1, -1)
scale_tensor = torch.from_numpy(param['scale']).reshape(1, 1)
return id_tensor, scale_tensor
def calc_smplx2faceverse(body_fitting_result_fpath, face_fitting_result_fpath, output_dir):
device = torch.device('cuda')
os.makedirs(output_dir, exist_ok=True)
betas = load_smpl_beta(body_fitting_result_fpath)
id_tensor, scale_tensor = load_face_id_scale_param(face_fitting_result_fpath)
smpl = smplx.SMPLX(model_path='./AnimatableGaussians/smpl_files/smplx', gender='neutral',
use_pca=True, num_pca_comps=45, flat_hand_mean=True, batch_size=1)
flame = smplx.FLAME(model_path='./AnimatableGaussians/smpl_files/FLAME2019', gender='neutral', batch_size=1)
pose = np.zeros([63], dtype=np.float32)
pose = torch.from_numpy(pose).unsqueeze(0)
smpl_out = smpl(body_pose=pose, betas=betas)
verts = smpl_out.vertices.detach().cpu().squeeze(0).numpy()
flame_out = flame()
verts_flame = flame_out.vertices.detach().cpu().squeeze(0).numpy()
smplx2flame_data = np.load('./data/smpl_models/smplx_mano_flame_correspondences/SMPL-X__FLAME_vertex_ids.npy')
verts_flame_on_smplx = verts[smplx2flame_data]
orient, t = estimate_rigid_transformation(verts_flame, verts_flame_on_smplx)
R, _ = cv2.Rodrigues(orient)
rel_transf = np.eye(4)
rel_transf[:3, :3] = R
rel_transf[:3, 3] = t.reshape(-1)
np.save('%s/flame_to_smplx.npy' % (output_dir), rel_transf.astype(np.float32))
# TODO: DELETE ME
with open('./debug/debug_verts_smplx.obj', 'w') as fp:
for v in verts:
fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
with open('./debug/debug_verts_flame_in_smplx.obj', 'w') as fp:
for v in np.matmul(verts_flame, R.transpose()) + t.reshape([1, 3]):
fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
# align Faceverse to T-pose FLAME on SMPL-X
faceverse_mesh = trimesh.load_mesh('./data/smpl_models/faceverse2flame/faceverse_icp.obj', process=False)
verts_faceverse_ref = np.matmul(np.asarray(faceverse_mesh.vertices), R.transpose()) + t.reshape(1, 3)
# TODO: DELETE ME
with open('./debug/debug_verts_faceverse_ref.obj', 'w') as fp:
for v in verts_faceverse_ref:
fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
model_dict = np.load('./data/faceverse_models/faceverse_simple_v2.npy', allow_pickle=True).item()
faceverse_model = FaceVerseModel(model_dict, batch_size=1)
faceverse_model.init_coeff_tensors()
coeffs = faceverse_model.get_packed_tensors()
fv_out = faceverse_model.forward(coeffs=coeffs)
verts_faceverse = fv_out['v'].squeeze(0).detach().cpu().numpy()
# calculate the relative transformation between FLAME in canonical pose and its position on SMPL-X
orient, t = estimate_rigid_transformation(verts_faceverse, verts_faceverse_ref)
orient = torch.from_numpy(orient.astype(np.float32)).unsqueeze(0).to(device)
t = torch.from_numpy(t.astype(np.float32)).unsqueeze(0).to(device)
# optimize the Faceverse to fit SMPL-X
faceverse_model.init_coeff_tensors(
rot_coeff=orient, trans_coeff=t, id_coeff=id_tensor.to(device), scale_coeff=scale_tensor.to(device))
nonrigid_optim_params = [
faceverse_model.get_exp_tensor(), faceverse_model.get_rot_tensor(), faceverse_model.get_trans_tensor(),
# faceverse_model.get_scale_tensor(), faceverse_model.get_id_tensor()
]
nonrigid_optimizer = torch.optim.Adam(nonrigid_optim_params, lr=1e-1)
verts_faceverse_ref = torch.from_numpy(verts_faceverse_ref.astype(np.float32)).to(device).unsqueeze(0)
for iter in range(1000):
coeffs = faceverse_model.get_packed_tensors()
fv_out = faceverse_model.forward(coeffs=coeffs)
verts_pred = fv_out['v']
loss = torch.mean(torch.square(verts_pred - verts_faceverse_ref))
if iter % 10 == 0:
print(loss.item())
nonrigid_optimizer.zero_grad()
loss.backward()
nonrigid_optimizer.step()
np.savez('%s/faceverse_param_to_smplx.npz' % (output_dir), {
'id': faceverse_model.get_id_tensor().detach().cpu().numpy(),
'exp': faceverse_model.get_exp_tensor().detach().cpu().numpy(),
'rot': faceverse_model.get_rot_tensor().detach().cpu().numpy(),
'transl': faceverse_model.get_trans_tensor().detach().cpu().numpy(),
'scale': faceverse_model.get_scale_tensor().detach().cpu().numpy(),
})
# calculate SMPLX to faceverse space transformation (without scale)
orient = faceverse_model.get_rot_tensor().detach().cpu().numpy()
transl = faceverse_model.get_trans_tensor().detach().cpu().numpy()
rotmat, _ = cv2.Rodrigues(orient)
transform_mat = np.eye(4)
transform_mat[:3, :3] = rotmat
transform_mat[:3, 3] = transl
transform_mat = np.linalg.inv(transform_mat)
np.save('%s/smplx_to_faceverse_space.npy' % (output_dir), transform_mat.astype(np.float32))
# calculate SMPLX to faceverse distance
dists = []
verts_faceverse_ref = verts_faceverse_ref.detach().cpu().numpy()
for v in verts:
dist = np.linalg.norm(v.reshape(1, 3) - verts_faceverse_ref, axis=-1)
dist = np.min(dist)
dists.append(dist)
dists = np.asarray(dists)
np.save('%s/smplx_verts_to_faceverse_dist.npy' % (output_dir), dists.astype(np.float32))
# sample nodes on facial area
dists_ = np.ones_like(dists)
smplx_topo_new = np.load('./data/smpl_models/smplx_topo_new.npy')
valid_vids = set(smplx_topo_new.reshape([-1]).tolist())
dists_[np.asarray(list(valid_vids))] = dists[np.asarray(list(valid_vids))]
vids_on_face = np.where(dists_ < 0.01)[0]
verts_on_face = verts[vids_on_face]
geod_dist_mat = np.linalg.norm(np.expand_dims(verts_on_face, axis=0) - np.expand_dims(verts_on_face, axis=1),
axis=2)
nodes = [0] # nose
dist_nodes_to_rest_points = geod_dist_mat[nodes[0]]
for i in range(1, 256):
idx = np.argmax(dist_nodes_to_rest_points)
nodes.append(idx)
new_dist = geod_dist_mat[idx]
update_flag = new_dist < dist_nodes_to_rest_points
dist_nodes_to_rest_points[update_flag] = new_dist[update_flag]
# with open('./debug/debug_face_nodes.obj', 'w') as fp:
# for n in verts_on_face[np.asarray(nodes)]:
# fp.write('v %f %f %f\n' % (n[0], n[1], n[2]))
vids_on_faces_sampled = vids_on_face[np.asarray(nodes)]
vids_on_faces_sampled = np.ascontiguousarray(vids_on_faces_sampled).astype(np.int32)
np.save('%s/vids_on_faces_sampled.npy' % (output_dir), vids_on_faces_sampled)
# test SMPLX-to-faceverse space transformation (without scale)
verts_smpl_in_faceverse = np.matmul(verts, transform_mat[:3, :3].transpose()) + \
transform_mat[:3, 3].reshape(1, 3)
with open('./debug/debug_verts_smpl_in_faceverse.obj', 'w') as fp:
for v in verts_smpl_in_faceverse:
fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
# save personalized, canonical faceverse model
faceverse_model.init_coeff_tensors(id_coeff=id_tensor.to(device), scale_coeff=scale_tensor.to(device))
coeffs = faceverse_model.get_packed_tensors()
fv_out = faceverse_model.forward(coeffs=coeffs)
verts_faceverse = fv_out['v'].squeeze(0).detach().cpu().numpy()
with open('./debug/debug_verts_faceverse.obj', 'w') as fp:
for v in verts_faceverse:
fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
if __name__ == '__main__':
# body_fitting_result_dir = 'D:/UpperBodyAvatar/code/smplfitting_multiview_sequence_smplx/results/Shuangqing/zzr_fullbody_20221130_01_2k/whole.pt'
# face_fitting_result_dir = 'D:\\UpperBodyAvatar\\data\\Shuangqing\\zzr_face_20221130_01_2k\\faceverse_params'
#
# output_dir = './data/faceverse/'
# result_suffix = 'shuangqing_zzr'
# body_fitting_result_dir = 'D:/Product/FullAppRelease/smplfitting_multiview_sequence_smplx/results/body_data_model_20231224/whole.pt'
# face_fitting_result_dir = 'D:/Product/data/HuiyingCenter/20231224_model/model_20231224_face_data/faceverse_params'
#
# output_dir = './data/faceverse/'
# result_suffix = 'huiyin_model20231224'
body_fitting_result_dir = 'D:/Product/FullAppRelease/smplfitting_multiview_sequence_smplx/results/body_data_male20230530_betterhand/whole.pt'
face_fitting_result_dir = 'D:/Product/data/HuiyingCenter/20230531_models/male20230530_face_data/faceverse_params'
output_dir = './data/body_face_stitching/huiyin_male20230530'
calc_smplx2faceverse(body_fitting_result_dir, face_fitting_result_dir, output_dir)
|