File size: 56,020 Bytes
ec9a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
import os
import numpy as np
import math
import cv2
import onnxruntime
import time
import queue
import threading
import copy
from .retinaface import RetinaFaceDetector
from .remedian import remedian

def resolve(name):
    f = os.path.join(os.path.dirname(__file__), name)
    return f

def clamp_to_im(pt, w, h):
    x = pt[0]
    y = pt[1]
    if x < 0:
        x = 0
    if y < 0:
        y = 0
    if x >= w:
        x = w-1
    if y >= h:
        y = h-1
    return (int(x), int(y+1))

def rotate(origin, point, a):
    a = -a
    ox, oy = origin
    px, py = point

    qx = ox + math.cos(a) * (px - ox) - math.sin(a) * (py - oy)
    qy = oy + math.sin(a) * (px - ox) + math.cos(a) * (py - oy)
    return qx, qy

def angle(p1, p2):
    p1 = np.array(p1)
    p2 = np.array(p2)
    a = np.arctan2(*(p2 - p1)[::-1])
    return (a % (2 * np.pi))

def compensate(p1, p2):
    a = angle(p1, p2)
    return rotate(p1, p2, a), a

def rotate_image(image, a, center):
    (h, w) = image.shape[:2]
    a = np.rad2deg(a)
    M = cv2.getRotationMatrix2D((float(center[0]), float(center[1])), a, 1.0)
    rotated = cv2.warpAffine(image, M, (w, h))
    return rotated

def intersects(r1, r2, amount=0.3):
    area1 = r1[2] * r1[3]
    area2 = r2[2] * r2[3]
    inter = 0.0
    total = area1 + area2
    
    r1_x1, r1_y1, w, h = r1
    r1_x2 = r1_x1 + w
    r1_y2 = r1_y1 + h
    r2_x1, r2_y1, w, h = r2
    r2_x2 = r2_x1 + w
    r2_y2 = r2_y1 + h

    left = max(r1_x1, r2_x1)
    right = min(r1_x2, r2_x2)
    top = max(r1_y1, r2_y1)
    bottom = min(r1_y2, r2_y2)
    if left < right and top < bottom:
        inter = (right - left) * (bottom - top)
        total -= inter

    if inter / total >= amount:
        return True

    return False

    #return not (r1_x1 > r2_x2 or r1_x2 < r2_x1 or r1_y1 > r2_y2 or r1_y2 < r2_y1)

def group_rects(rects):
    rect_groups = {}
    for rect in rects:
        rect_groups[str(rect)] = [-1, -1, []]
    group_id = 0
    for i, rect in enumerate(rects):
        name = str(rect)
        group = group_id
        group_id += 1
        if rect_groups[name][0] < 0:
            rect_groups[name] = [group, -1, []]
        else:
            group = rect_groups[name][0]
        for j, other_rect in enumerate(rects):
            if i == j:
                continue;
            inter = intersects(rect, other_rect)
            if intersects(rect, other_rect):
                rect_groups[str(other_rect)] = [group, -1, []]
    return rect_groups

def logit(p, factor=16.0):
    if p >= 1.0:
        p = 0.9999999
    if p <= 0.0:
        p = 0.0000001
    p = p/(1-p)
    return float(np.log(p)) / float(factor)

def logit_arr(p, factor=16.0):
    p = np.clip(p, 0.0000001, 0.9999999)
    return np.log(p / (1 - p)) / float(factor)

def matrix_to_quaternion(m):
    t = 0.0
    q = [0.0, 0.0, 0, 0.0]
    if m[2,2] < 0:
        if m[0,0] > m[1,1]:
            t = 1 + m[0,0] - m[1,1] - m[2,2]
            q = [t, m[0,1]+m[1,0], m[2,0]+m[0,2], m[1,2]-m[2,1]]
        else:
            t = 1 - m[0,0] + m[1,1] - m[2,2]
            q = [m[0,1]+m[1,0], t, m[1,2]+m[2,1], m[2,0]-m[0,2]]
    else:
        if m[0,0] < -m[1,1]:
            t = 1 - m[0,0] - m[1,1] + m[2,2]
            q = [m[2,0]+m[0,2], m[1,2]+m[2,1], t, m[0,1]-m[1,0]]
        else:
            t = 1 + m[0,0] + m[1,1] + m[2,2]
            q = [m[1,2]-m[2,1], m[2,0]-m[0,2], m[0,1]-m[1,0], t]
    q = np.array(q, np.float32) * 0.5 / np.sqrt(t)
    return q

def worker_thread(session, frame, input, crop_info, queue, input_name, idx, tracker):
    output = session.run([], {input_name: input})[0]
    conf, lms = tracker.landmarks(output[0], crop_info)
    if conf > tracker.threshold:
        try:
            eye_state = tracker.get_eye_state(frame, lms, single=True)
        except:
            eye_state = [(1.0, 0.0, 0.0, 0.0), (1.0, 0.0, 0.0, 0.0)]
        queue.put((session, conf, (lms, eye_state), crop_info, idx))
    else:
        queue.put((session,))

class Feature():
    def __init__(self, threshold=0.15, alpha=0.2, hard_factor=0.15, decay=0.001, max_feature_updates=0):
        self.median = remedian()
        self.min = None
        self.max = None
        self.hard_min = None
        self.hard_max = None
        self.threshold = threshold
        self.alpha = alpha
        self.hard_factor = hard_factor
        self.decay = decay
        self.last = 0
        self.current_median = 0
        self.update_count = 0
        self.max_feature_updates = max_feature_updates
        self.first_seen = -1
        self.updating = True

    def update(self, x, now=0):
        if self.max_feature_updates > 0:
            if self.first_seen == -1:
                self.first_seen = now;
        new = self.update_state(x, now=now)
        filtered = self.last * self.alpha + new * (1 - self.alpha)
        self.last = filtered
        return filtered

    def update_state(self, x, now=0):
        updating = self.updating and (self.max_feature_updates == 0 or now - self.first_seen < self.max_feature_updates)
        if updating:
            self.median + x
            self.current_median = self.median.median()
        else:
            self.updating = False
        median = self.current_median

        if self.min is None:
            if x < median and (median - x) / median > self.threshold:
                if updating:
                    self.min = x
                    self.hard_min = self.min + self.hard_factor * (median - self.min)
                return -1
            return 0
        else:
            if x < self.min:
                if updating:
                    self.min = x
                    self.hard_min = self.min + self.hard_factor * (median - self.min)
                return -1
        if self.max is None:
            if x > median and (x - median) / median > self.threshold:
                if updating:
                    self.max = x
                    self.hard_max = self.max - self.hard_factor * (self.max - median)
                return 1
            return 0
        else:
            if x > self.max:
                if updating:
                    self.max = x
                    self.hard_max = self.max - self.hard_factor * (self.max - median)
                return 1

        if updating:
            if self.min < self.hard_min:
                self.min = self.hard_min * self.decay + self.min * (1 - self.decay)
            if self.max > self.hard_max:
                self.max = self.hard_max * self.decay + self.max * (1 - self.decay)

        if x < median:
            return - (1 - (x - self.min) / (median - self.min))
        elif x > median:
            return (x - median) / (self.max - median)

        return 0

class FeatureExtractor():
    def __init__(self, max_feature_updates=0):
        self.eye_l = Feature(max_feature_updates=max_feature_updates)
        self.eye_r = Feature(max_feature_updates=max_feature_updates)
        self.eyebrow_updown_l = Feature(max_feature_updates=max_feature_updates)
        self.eyebrow_updown_r = Feature(max_feature_updates=max_feature_updates)
        self.eyebrow_quirk_l = Feature(threshold=0.05, max_feature_updates=max_feature_updates)
        self.eyebrow_quirk_r = Feature(threshold=0.05, max_feature_updates=max_feature_updates)
        self.eyebrow_steepness_l = Feature(threshold=0.05, max_feature_updates=max_feature_updates)
        self.eyebrow_steepness_r = Feature(threshold=0.05, max_feature_updates=max_feature_updates)
        self.mouth_corner_updown_l = Feature(max_feature_updates=max_feature_updates)
        self.mouth_corner_updown_r = Feature(max_feature_updates=max_feature_updates)
        self.mouth_corner_inout_l = Feature(threshold=0.02, max_feature_updates=max_feature_updates)
        self.mouth_corner_inout_r = Feature(threshold=0.02, max_feature_updates=max_feature_updates)
        self.mouth_open = Feature(max_feature_updates=max_feature_updates)
        self.mouth_wide = Feature(threshold=0.02, max_feature_updates=max_feature_updates)

    def align_points(self, a, b, pts):
        a = tuple(a)
        b = tuple(b)
        alpha = angle(a, b)
        alpha = np.rad2deg(alpha)
        if alpha >= 90:
            alpha = - (alpha - 180)
        if alpha <= -90:
            alpha = - (alpha + 180)
        alpha = np.deg2rad(alpha)
        aligned_pts = []
        for pt in pts:
            aligned_pts.append(np.array(rotate(a, pt, alpha)))
        return alpha, np.array(aligned_pts)

    def update(self, pts, full=True):
        features = {}
        now = time.perf_counter()

        norm_distance_x = np.mean([pts[0, 0] - pts[16, 0], pts[1, 0] - pts[15, 0]])
        norm_distance_y = np.mean([pts[27, 1] - pts[28, 1], pts[28, 1] - pts[29, 1], pts[29, 1] - pts[30, 1]])

        a1, f_pts = self.align_points(pts[42], pts[45], pts[[43, 44, 47, 46]])
        f = abs((np.mean([f_pts[0,1], f_pts[1,1]]) - np.mean([f_pts[2,1], f_pts[3,1]])) / norm_distance_y)
        features["eye_l"] = self.eye_l.update(f, now)

        a2, f_pts = self.align_points(pts[36], pts[39], pts[[37, 38, 41, 40]])
        f = abs((np.mean([f_pts[0,1], f_pts[1,1]]) - np.mean([f_pts[2,1], f_pts[3,1]])) / norm_distance_y)
        features["eye_r"] = self.eye_r.update(f, now)

        if full:
            a3, _ = self.align_points(pts[0], pts[16], [])
            a4, _ = self.align_points(pts[31], pts[35], [])
            norm_angle = np.mean(list(map(np.rad2deg, [a1, a2, a3, a4])))

            a, f_pts = self.align_points(pts[22], pts[26], pts[[22, 23, 24, 25, 26]])
            features["eyebrow_steepness_l"] = self.eyebrow_steepness_l.update(-np.rad2deg(a) - norm_angle, now)
            f = np.max(np.abs(np.array(f_pts[1:4]) - f_pts[0, 1])) / norm_distance_y
            features["eyebrow_quirk_l"] = self.eyebrow_quirk_l.update(f, now)

            a, f_pts = self.align_points(pts[17], pts[21], pts[[17, 18, 19, 20, 21]])
            features["eyebrow_steepness_r"] = self.eyebrow_steepness_r.update(np.rad2deg(a) - norm_angle, now)
            f = np.max(np.abs(np.array(f_pts[1:4]) - f_pts[0, 1])) / norm_distance_y
            features["eyebrow_quirk_r"] = self.eyebrow_quirk_r.update(f, now)
        else:
            features["eyebrow_steepness_l"] = 0.
            features["eyebrow_steepness_r"] = 0.
            features["eyebrow_quirk_l"] = 0.
            features["eyebrow_quirk_r"] = 0.

        f = (np.mean([pts[22, 1], pts[26, 1]]) - pts[27, 1]) / norm_distance_y
        features["eyebrow_updown_l"] = self.eyebrow_updown_l.update(f, now)

        f = (np.mean([pts[17, 1], pts[21, 1]]) - pts[27, 1]) / norm_distance_y
        features["eyebrow_updown_r"] = self.eyebrow_updown_r.update(f, now)

        upper_mouth_line = np.mean([pts[49, 1], pts[50, 1], pts[51, 1]])
        center_line = np.mean([pts[50, 0], pts[60, 0], pts[27, 0], pts[30, 0], pts[64, 0], pts[55, 0]])

        f = (upper_mouth_line - pts[62, 1]) / norm_distance_y
        features["mouth_corner_updown_l"] = self.mouth_corner_updown_l.update(f, now)
        if full:
            f = abs(center_line - pts[62, 0]) / norm_distance_x
            features["mouth_corner_inout_l"] = self.mouth_corner_inout_l.update(f, now)
        else:
            features["mouth_corner_inout_l"] = 0.

        f = (upper_mouth_line - pts[58, 1]) / norm_distance_y
        features["mouth_corner_updown_r"] = self.mouth_corner_updown_r.update(f, now)
        if full:
            f = abs(center_line - pts[58, 0]) / norm_distance_x
            features["mouth_corner_inout_r"] = self.mouth_corner_inout_r.update(f, now)
        else:
            features["mouth_corner_inout_r"] = 0.

        f = abs(np.mean(pts[[59,60,61], 1], axis=0) - np.mean(pts[[63,64,65], 1], axis=0)) / norm_distance_y
        features["mouth_open"] = self.mouth_open.update(f, now)

        f = abs(pts[58, 0] - pts[62, 0]) / norm_distance_x
        features["mouth_wide"] = self.mouth_wide.update(f, now)

        return features

class FaceInfo():
    def __init__(self, id, tracker):
        self.id = id
        self.frame_count = -1
        self.tracker = tracker
        self.contour_pts = [0,1,8,15,16,27,28,29,30,31,32,33,34,35]
        self.face_3d = copy.copy(self.tracker.face_3d)
        if self.tracker.model_type == -1:
            self.contour_pts = [0,2,8,14,16,27,30,33]
        self.reset()
        self.alive = False
        self.coord = None
        self.base_scale_v = self.tracker.face_3d[27:30, 1] - self.tracker.face_3d[28:31, 1]
        self.base_scale_h = np.abs(self.tracker.face_3d[[0, 36, 42], 0] - self.tracker.face_3d[[16, 39, 45], 0])

        self.limit_3d_adjustment = True
        self.update_count_delta = 75.
        self.update_count_max = 7500.

        if self.tracker.max_feature_updates > 0:
            self.features = FeatureExtractor(self.tracker.max_feature_updates)

    def reset(self):
        self.alive = False
        self.conf = None
        self.lms = None
        self.eye_state = None
        self.rotation = None
        self.translation = None
        self.success = None
        self.quaternion = None
        self.euler = None
        self.pnp_error = None
        self.pts_3d = None
        self.eye_blink = None
        self.bbox = None
        self.pnp_error = 0
        if self.tracker.max_feature_updates < 1:
            self.features = FeatureExtractor(0)
        self.current_features = {}
        self.contour = np.zeros((21,3))
        self.update_counts = np.zeros((66,2))
        self.update_contour()
        self.fail_count = 0

    def update(self, result, coord, frame_count):
        self.frame_count = frame_count
        if result is None:
            self.reset()
        else:
            self.conf, (self.lms, self.eye_state) = result
            self.coord = coord
            self.alive = True

    def update_contour(self):
        self.contour = np.array(self.face_3d[self.contour_pts])

    def normalize_pts3d(self, pts_3d):
        # Calculate angle using nose
        pts_3d[:, 0:2] -= pts_3d[30, 0:2]
        alpha = angle(pts_3d[30, 0:2], pts_3d[27, 0:2])
        alpha -= np.deg2rad(90)

        R = np.matrix([[np.cos(alpha), -np.sin(alpha)], [np.sin(alpha), np.cos(alpha)]])
        pts_3d[:, 0:2] = (pts_3d - pts_3d[30])[:, 0:2].dot(R) + pts_3d[30, 0:2]

        # Vertical scale
        pts_3d[:, 1] /= np.mean((pts_3d[27:30, 1] - pts_3d[28:31, 1]) / self.base_scale_v)

        # Horizontal scale
        pts_3d[:, 0] /= np.mean(np.abs(pts_3d[[0, 36, 42], 0] - pts_3d[[16, 39, 45], 0]) / self.base_scale_h)

        return pts_3d

    def adjust_3d(self):
        if self.conf < 0.4 or self.pnp_error > 300:
            return

        if self.tracker.model_type != -1 and not self.tracker.static_model:
            max_runs = 1
            eligible = np.delete(np.arange(0, 66), [30])
            changed_any = False
            update_type = -1
            d_o = np.ones((66,))
            d_c = np.ones((66,))
            for runs in range(max_runs):
                r = 1.0 + np.random.random_sample((66,3)) * 0.02 - 0.01
                r[30, :] = 1.0
                if self.euler[0] > -165 and self.euler[0] < 145:
                    continue
                elif self.euler[1] > -10 and self.euler[1] < 20:
                    r[:, 2] = 1.0
                    update_type = 0
                else:
                    r[:, 0:2] = 1.0
                    if self.euler[2] > 120 or self.euler[2] < 60:
                        continue
                    # Enable only one side of the points, depending on direction
                    elif self.euler[1] < -10:
                        update_type = 1
                        r[[0, 1, 2, 3, 4, 5, 6, 7, 17, 18, 19, 20, 21, 31, 32, 36, 37, 38, 39, 40, 41, 48, 49, 56, 57, 58, 59, 65], 2] = 1.0
                        eligible = [8, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64]
                    else:
                        update_type = 1
                        r[[9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 34, 35, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 61, 62, 63], 2] = 1.0
                        eligible = [0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 27, 28, 29, 31, 32, 33, 36, 37, 38, 39, 40, 41, 48, 49, 50, 55, 56, 57, 58, 59, 60, 64, 65]

                if self.limit_3d_adjustment:
                    eligible = np.nonzero(self.update_counts[:, update_type] < self.update_counts[:, abs(update_type - 1)] + self.update_count_delta)[0]
                    if eligible.shape[0] <= 0:
                        break

                if runs == 0:
                    updated = copy.copy(self.face_3d[0:66])
                    o_projected = np.ones((66,2))
                    o_projected[eligible] = np.squeeze(np.array(cv2.projectPoints(self.face_3d[eligible], self.rotation, self.translation, self.tracker.camera, self.tracker.dist_coeffs)[0]), 1)
                c = updated * r
                c_projected = np.zeros((66,2))
                c_projected[eligible] = np.squeeze(np.array(cv2.projectPoints(c[eligible], self.rotation, self.translation, self.tracker.camera, self.tracker.dist_coeffs)[0]), 1)
                changed = False

                d_o[eligible] = np.linalg.norm(o_projected[eligible] - self.lms[eligible, 0:2], axis=1)
                d_c[eligible] = np.linalg.norm(c_projected[eligible] - self.lms[eligible, 0:2], axis=1)
                indices = np.nonzero(d_c < d_o)[0]
                if indices.shape[0] > 0:
                    if self.limit_3d_adjustment:
                        indices = np.intersect1d(indices, eligible)
                    if indices.shape[0] > 0:
                        self.update_counts[indices, update_type] += 1
                        updated[indices] = c[indices]
                        o_projected[indices] = c_projected[indices]
                        changed = True
                changed_any = changed_any or changed

                if not changed:
                    break

            if changed_any:
                # Update weighted by point confidence
                weights = np.zeros((66,3))
                weights[:, :] = self.lms[0:66, 2:3]
                weights[weights > 0.7] = 1.0
                weights = 1.0 - weights
                update_indices = np.arange(0, 66)
                if self.limit_3d_adjustment:
                    update_indices = np.nonzero(self.update_counts[:, update_type] <= self.update_count_max)[0]
                self.face_3d[update_indices] = self.face_3d[update_indices] * weights[update_indices] + updated[update_indices] * (1. - weights[update_indices])
                self.update_contour()

        self.pts_3d = self.normalize_pts3d(self.pts_3d)
        if self.tracker.feature_level == 2:
            self.current_features = self.features.update(self.pts_3d[:, 0:2])
            self.eye_blink = []
            self.eye_blink.append(1 - min(max(0, -self.current_features["eye_r"]), 1))
            self.eye_blink.append(1 - min(max(0, -self.current_features["eye_l"]), 1))
        elif self.tracker.feature_level == 1:
            self.current_features = self.features.update(self.pts_3d[:, 0:2], False)
            self.eye_blink = []
            self.eye_blink.append(1 - min(max(0, -self.current_features["eye_r"]), 1))
            self.eye_blink.append(1 - min(max(0, -self.current_features["eye_l"]), 1))

def get_model_base_path(model_dir):
    model_base_path = resolve(os.path.join("models"))
    if model_dir is None:
        if not os.path.exists(model_base_path):
            model_base_path = resolve(os.path.join("..", "models"))
    else:
        model_base_path = model_dir
    return model_base_path

class Tracker():
    def __init__(self, width, height, model_type=3, detection_threshold=0.6, threshold=None, max_faces=1, discard_after=5, scan_every=3, bbox_growth=0.0, max_threads=4, silent=False, model_dir=None, no_gaze=False, use_retinaface=False, max_feature_updates=0, static_model=False, feature_level=2, try_hard=False):
        options = onnxruntime.SessionOptions()
        options.inter_op_num_threads = 1
        options.intra_op_num_threads = min(max_threads,4)
        options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
        options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        options.log_severity_level = 3
        self.model_type = model_type
        self.models = [
            "lm_model0_opt.onnx",
            "lm_model1_opt.onnx",
            "lm_model2_opt.onnx",
            "lm_model3_opt.onnx",
            "lm_model4_opt.onnx"
        ]
        model = "lm_modelT_opt.onnx"
        if model_type >= 0:
            model = self.models[self.model_type]
        if model_type == -2:
            model = "lm_modelV_opt.onnx"
        if model_type == -3:
            model = "lm_modelU_opt.onnx"
        model_base_path = get_model_base_path(model_dir)

        if threshold is None:
            threshold = 0.6
            if model_type < 0:
                threshold = 0.87

        self.retinaface = RetinaFaceDetector(model_path=os.path.join(model_base_path, "retinaface_640x640_opt.onnx"), json_path=os.path.join(model_base_path, "priorbox_640x640.json"), threads=max(max_threads,4), top_k=max_faces, res=(640, 640))
        self.retinaface_scan = RetinaFaceDetector(model_path=os.path.join(model_base_path, "retinaface_640x640_opt.onnx"), json_path=os.path.join(model_base_path, "priorbox_640x640.json"), threads=2, top_k=max_faces, res=(640, 640))
        self.use_retinaface = use_retinaface

        # Single face instance with multiple threads
        self.session = onnxruntime.InferenceSession(os.path.join(model_base_path, model), sess_options=options)

        # Multiple faces with single threads
        self.sessions = []
        self.max_workers = max(min(max_threads, max_faces), 1)
        extra_threads = max_threads % self.max_workers
        for i in range(self.max_workers):
            options = onnxruntime.SessionOptions()
            options.inter_op_num_threads = 1
            options.intra_op_num_threads = min(max(max_threads // self.max_workers, 4), 1)
            if options.intra_op_num_threads < 1:
                options.intra_op_num_threads = 1
            elif i < extra_threads:
                options.intra_op_num_threads += 1
            options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
            options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
            self.sessions.append(onnxruntime.InferenceSession(os.path.join(model_base_path, model), sess_options=options))
        self.input_name = self.session.get_inputs()[0].name

        options = onnxruntime.SessionOptions()
        options.inter_op_num_threads = 1
        options.intra_op_num_threads = max(max_threads,4)
        options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
        options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        options.log_severity_level = 3
        self.gaze_model = onnxruntime.InferenceSession(os.path.join(model_base_path, "mnv3_gaze32_split_opt.onnx"), sess_options=options)
        options.intra_op_num_threads = 1
        self.gaze_model_single = onnxruntime.InferenceSession(os.path.join(model_base_path, "mnv3_gaze32_split_opt.onnx"), sess_options=options)

        self.detection = onnxruntime.InferenceSession(os.path.join(model_base_path, "mnv3_detection_opt.onnx"), sess_options=options)
        self.faces = []

        # Image normalization constants
        self.mean = np.float32(np.array([0.485, 0.456, 0.406]))
        self.std = np.float32(np.array([0.229, 0.224, 0.225]))
        self.mean = self.mean / self.std
        self.std = self.std * 255.0

        self.mean = - self.mean
        self.std = 1.0 / self.std
        self.mean_32 = np.tile(self.mean, [32, 32, 1])
        self.std_32 = np.tile(self.std, [32, 32, 1])
        self.mean_224 = np.tile(self.mean, [224, 224, 1])
        self.std_224 = np.tile(self.std, [224, 224, 1])

        # PnP solving
        self.face_3d = np.array([
            [ 0.4551769692672  ,  0.300895790030204, -0.764429433974752],
            [ 0.448998827123556,  0.166995837790733, -0.765143004071253],
            [ 0.437431554952677,  0.022655479179981, -0.739267175112735],
            [ 0.415033422928434, -0.088941454648772, -0.747947437846473],
            [ 0.389123587370091, -0.232380029794684, -0.704788385327458],
            [ 0.334630113904382, -0.361265387599081, -0.615587579236862],
            [ 0.263725112132858, -0.460009725616771, -0.491479221041573],
            [ 0.16241621322721 , -0.558037146073869, -0.339445180872282],
            [ 0.               , -0.621079019321682, -0.287294770748887],
            [-0.16241621322721 , -0.558037146073869, -0.339445180872282],
            [-0.263725112132858, -0.460009725616771, -0.491479221041573],
            [-0.334630113904382, -0.361265387599081, -0.615587579236862],
            [-0.389123587370091, -0.232380029794684, -0.704788385327458],
            [-0.415033422928434, -0.088941454648772, -0.747947437846473],
            [-0.437431554952677,  0.022655479179981, -0.739267175112735],
            [-0.448998827123556,  0.166995837790733, -0.765143004071253],
            [-0.4551769692672  ,  0.300895790030204, -0.764429433974752],
            [ 0.385529968662985,  0.402800553948697, -0.310031082540741],
            [ 0.322196658344302,  0.464439136821772, -0.250558059367669],
            [ 0.25409760441282 ,  0.46420381416882 , -0.208177722146526],
            [ 0.186875436782135,  0.44706071961879 , -0.145299823706503],
            [ 0.120880983543622,  0.423566314072968, -0.110757158774771],
            [-0.120880983543622,  0.423566314072968, -0.110757158774771],
            [-0.186875436782135,  0.44706071961879 , -0.145299823706503],
            [-0.25409760441282 ,  0.46420381416882 , -0.208177722146526],
            [-0.322196658344302,  0.464439136821772, -0.250558059367669],
            [-0.385529968662985,  0.402800553948697, -0.310031082540741],
            [ 0.               ,  0.293332603215811, -0.137582088779393],
            [ 0.               ,  0.194828701837823, -0.069158109325951],
            [ 0.               ,  0.103844017393155, -0.009151819844964],
            [ 0.               ,  0.               ,  0.               ],
            [ 0.080626352317973, -0.041276068128093, -0.134161035564826],
            [ 0.046439347377934, -0.057675223874769, -0.102990627164664],
            [ 0.               , -0.068753126205604, -0.090545348482397],
            [-0.046439347377934, -0.057675223874769, -0.102990627164664],
            [-0.080626352317973, -0.041276068128093, -0.134161035564826],
            [ 0.315905195966084,  0.298337502555443, -0.285107407636464],
            [ 0.275252345439353,  0.312721904921771, -0.244558251170671],
            [ 0.176394511553111,  0.311907184376107, -0.219205360345231],
            [ 0.131229723798772,  0.284447361805627, -0.234239149487417],
            [ 0.184124948330084,  0.260179585304867, -0.226590776513707],
            [ 0.279433549294448,  0.267363071770222, -0.248441437111633],
            [-0.131229723798772,  0.284447361805627, -0.234239149487417],
            [-0.176394511553111,  0.311907184376107, -0.219205360345231],
            [-0.275252345439353,  0.312721904921771, -0.244558251170671],
            [-0.315905195966084,  0.298337502555443, -0.285107407636464],
            [-0.279433549294448,  0.267363071770222, -0.248441437111633],
            [-0.184124948330084,  0.260179585304867, -0.226590776513707],
            [ 0.121155252430729, -0.208988660580347, -0.160606287940521],
            [ 0.041356305910044, -0.194484199722098, -0.096159882202821],
            [ 0.               , -0.205180167345702, -0.083299217789729],
            [-0.041356305910044, -0.194484199722098, -0.096159882202821],
            [-0.121155252430729, -0.208988660580347, -0.160606287940521],
            [-0.132325402795928, -0.290857984604968, -0.187067868218105],
            [-0.064137791831655, -0.325377847425684, -0.158924039726607],
            [ 0.               , -0.343742581679188, -0.113925986025684],
            [ 0.064137791831655, -0.325377847425684, -0.158924039726607],
            [ 0.132325402795928, -0.290857984604968, -0.187067868218105],
            [ 0.181481567104525, -0.243239316141725, -0.231284988892766],
            [ 0.083999507750469, -0.239717753728704, -0.155256465640701],
            [ 0.               , -0.256058040176369, -0.0950619498899  ],
            [-0.083999507750469, -0.239717753728704, -0.155256465640701],
            [-0.181481567104525, -0.243239316141725, -0.231284988892766],
            [-0.074036069749345, -0.250689938345682, -0.177346470406188],
            [ 0.               , -0.264945854681568, -0.112349967428413],
            [ 0.074036069749345, -0.250689938345682, -0.177346470406188],
            # Pupils and eyeball centers
            [ 0.257990002632141,  0.276080012321472, -0.219998998939991],
            [-0.257990002632141,  0.276080012321472, -0.219998998939991],
            [ 0.257990002632141,  0.276080012321472, -0.324570998549461],
            [-0.257990002632141,  0.276080012321472, -0.324570998549461]
        ], np.float32)

        self.camera = np.array([[width, 0, width/2], [0, width, height/2], [0, 0, 1]], np.float32)
        self.inverse_camera = np.linalg.inv(self.camera)
        self.dist_coeffs = np.zeros((4,1))

        self.frame_count = 0
        self.width = width
        self.height = height
        self.threshold = threshold
        self.detection_threshold = detection_threshold
        self.max_faces = max_faces
        self.max_threads = max_threads
        self.discard = 0
        self.discard_after = discard_after
        self.detected = 0
        self.wait_count = 0
        self.scan_every = scan_every
        self.bbox_growth = bbox_growth
        self.silent = silent
        self.try_hard = try_hard

        self.res = 224.
        self.mean_res = self.mean_224
        self.std_res = self.std_224
        if model_type < 0:
            self.res = 56.
            self.mean_res = np.tile(self.mean, [56, 56, 1])
            self.std_res = np.tile(self.std, [56, 56, 1])
        if model_type < -1:
            self.res = 112.
            self.mean_res = np.tile(self.mean, [112, 112, 1])
            self.std_res = np.tile(self.std, [112, 112, 1])
        self.res_i = int(self.res)
        self.out_res = 27.
        if model_type < 0:
            self.out_res = 6.
        if model_type < -1:
            self.out_res = 13.
        self.out_res_i = int(self.out_res) + 1
        self.logit_factor = 16.
        if model_type < 0:
            self.logit_factor = 8.
        if model_type < -1:
            self.logit_factor = 16.

        self.no_gaze = no_gaze
        self.debug_gaze = False
        self.feature_level = feature_level
        if model_type == -1:
            self.feature_level = min(feature_level, 1)
        self.max_feature_updates = max_feature_updates
        self.static_model = static_model
        self.face_info = [FaceInfo(id, self) for id in range(max_faces)]
        self.fail_count = 0

    def detect_faces(self, frame):
        im = cv2.resize(frame, (224, 224), interpolation=cv2.INTER_LINEAR)[:,:,::-1] * self.std_224 + self.mean_224
        im = np.expand_dims(im, 0)
        im = np.transpose(im, (0,3,1,2))
        outputs, maxpool = self.detection.run([], {'input': im})
        outputs = np.array(outputs)
        maxpool = np.array(maxpool)
        outputs[0, 0, outputs[0, 0] != maxpool[0, 0]] = 0
        detections = np.flip(np.argsort(outputs[0,0].flatten()))
        results = []
        for det in detections[0:self.max_faces]:
            y, x = det // 56, det % 56
            c = outputs[0, 0, y, x]
            r = outputs[0, 1, y, x] * 112.
            x *= 4
            y *= 4
            r *= 1.0
            if c < self.detection_threshold:
                break
            results.append((x - r, y - r, 2 * r, 2 * r * 1.0))
        results = np.array(results).astype(np.float32)
        if results.shape[0] > 0:
            results[:, [0,2]] *= frame.shape[1] / 224.
            results[:, [1,3]] *= frame.shape[0] / 224.
        return results

    def landmarks(self, tensor, crop_info):
        crop_x1, crop_y1, scale_x, scale_y, _ = crop_info
        avg_conf = 0
        res = self.res - 1
        c0, c1, c2 = 66, 132, 198
        if self.model_type == -1:
            c0, c1, c2 = 30, 60, 90
        t_main = tensor[0:c0].reshape((c0,self.out_res_i * self.out_res_i))
        t_m = t_main.argmax(1)
        indices = np.expand_dims(t_m, 1)
        t_conf = np.take_along_axis(t_main, indices, 1).reshape((c0,))
        t_off_x = np.take_along_axis(tensor[c0:c1].reshape((c0,self.out_res_i * self.out_res_i)), indices, 1).reshape((c0,))
        t_off_y = np.take_along_axis(tensor[c1:c2].reshape((c0,self.out_res_i * self.out_res_i)), indices, 1).reshape((c0,))
        t_off_x = res * logit_arr(t_off_x, self.logit_factor)
        t_off_y = res * logit_arr(t_off_y, self.logit_factor)
        t_x = crop_y1 + scale_y * (res * np.floor(t_m / self.out_res_i) / self.out_res + t_off_x)
        t_y = crop_x1 + scale_x * (res * np.floor(np.mod(t_m, self.out_res_i)) / self.out_res + t_off_y)
        avg_conf = np.average(t_conf)
        lms = np.stack([t_x, t_y, t_conf], 1)
        lms[np.isnan(lms).any(axis=1)] = np.array([0.,0.,0.], dtype=np.float32)
        if self.model_type == -1:
            lms = lms[[0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,6,7,7,8,8,9,10,10,11,11,12,21,21,21,22,23,23,23,23,23,13,14,14,15,16,16,17,18,18,19,20,20,24,25,25,25,26,26,27,27,27,24,24,28,28,28,26,29,29,29]]
            #lms[[1,3,4,6,7,9,10,12,13,15,18,20,23,25,38,40,44,46]] += lms[[2,2,5,5,8,8,11,11,14,16,19,21,24,26,39,39,45,45]]
            #lms[[3,4,6,7,9,10,12,13]] += lms[[5,5,8,8,11,11,14,14]]
            #lms[[1,15,18,20,23,25,38,40,44,46]] /= 2.0
            #lms[[3,4,6,7,9,10,12,13]] /= 3.0
            part_avg = np.mean(np.partition(lms[:,2],3)[0:3])
            if part_avg < 0.65:
                avg_conf = part_avg
        return (avg_conf, np.array(lms))

    def estimate_depth(self, face_info):
        lms = np.concatenate((face_info.lms, np.array([[face_info.eye_state[0][1], face_info.eye_state[0][2], face_info.eye_state[0][3]], [face_info.eye_state[1][1], face_info.eye_state[1][2], face_info.eye_state[1][3]]], np.float32)), 0)

        image_pts = np.array(lms)[face_info.contour_pts, 0:2]

        success = False
        if not face_info.rotation is None:
            success, face_info.rotation, face_info.translation = cv2.solvePnP(face_info.contour, image_pts, self.camera, self.dist_coeffs, useExtrinsicGuess=True, rvec=np.transpose(face_info.rotation), tvec=np.transpose(face_info.translation), flags=cv2.SOLVEPNP_ITERATIVE)
        else:
            rvec = np.array([0, 0, 0], np.float32)
            tvec = np.array([0, 0, 0], np.float32)
            success, face_info.rotation, face_info.translation = cv2.solvePnP(face_info.contour, image_pts, self.camera, self.dist_coeffs, useExtrinsicGuess=True, rvec=rvec, tvec=tvec, flags=cv2.SOLVEPNP_ITERATIVE)

        rotation = face_info.rotation
        translation = face_info.translation

        pts_3d = np.zeros((70,3), np.float32)
        if not success:
            face_info.rotation = np.array([0.0, 0.0, 0.0], np.float32)
            face_info.translation = np.array([0.0, 0.0, 0.0], np.float32)
            return False, np.zeros(4), np.zeros(3), 99999., pts_3d, lms
        else:
            face_info.rotation = np.transpose(face_info.rotation)
            face_info.translation = np.transpose(face_info.translation)

        rmat, _ = cv2.Rodrigues(rotation)
        inverse_rotation = np.linalg.inv(rmat)
        t_reference = face_info.face_3d.dot(rmat.transpose())
        t_reference = t_reference + face_info.translation
        t_reference = t_reference.dot(self.camera.transpose())
        t_depth = t_reference[:, 2]
        t_depth[t_depth == 0] = 0.000001
        t_depth_e = np.expand_dims(t_depth[:],1)
        t_reference = t_reference[:] / t_depth_e
        pts_3d[0:66] = np.stack([lms[0:66,0], lms[0:66,1], np.ones((66,))], 1) * t_depth_e[0:66]
        pts_3d[0:66] = (pts_3d[0:66].dot(self.inverse_camera.transpose()) - face_info.translation).dot(inverse_rotation.transpose())
        pnp_error = np.power(lms[0:17,0:2] - t_reference[0:17,0:2], 2).sum()
        pnp_error += np.power(lms[30,0:2] - t_reference[30,0:2], 2).sum()
        if np.isnan(pnp_error):
            pnp_error = 9999999.
        for i, pt in enumerate(face_info.face_3d[66:70]):
            if i == 2:
                # Right eyeball
                # Eyeballs have an average diameter of 12.5mm and and the distance between eye corners is 30-35mm, so a conversion factor of 0.385 can be applied
                eye_center = (pts_3d[36] + pts_3d[39]) / 2.0
                d_corner = np.linalg.norm(pts_3d[36] - pts_3d[39])
                depth = 0.385 * d_corner
                pt_3d = np.array([eye_center[0], eye_center[1], eye_center[2] - depth])
                pts_3d[68] = pt_3d
                continue
            if i == 3:
                # Left eyeball
                eye_center = (pts_3d[42] + pts_3d[45]) / 2.0
                d_corner = np.linalg.norm(pts_3d[42] - pts_3d[45])
                depth = 0.385 * d_corner
                pt_3d = np.array([eye_center[0], eye_center[1], eye_center[2] - depth])
                pts_3d[69] = pt_3d
                continue
            if i == 0:
                d1 = np.linalg.norm(lms[66,0:2] - lms[36,0:2])
                d2 = np.linalg.norm(lms[66,0:2] - lms[39,0:2])
                d = d1 + d2
                pt = (pts_3d[36] * d1 + pts_3d[39] * d2) / d
            if i == 1:
                d1 = np.linalg.norm(lms[67,0:2] - lms[42,0:2])
                d2 = np.linalg.norm(lms[67,0:2] - lms[45,0:2])
                d = d1 + d2
                pt = (pts_3d[42] * d1 + pts_3d[45] * d2) / d
            if i < 2:
                reference = rmat.dot(pt)
                reference = reference + face_info.translation
                reference = self.camera.dot(reference)
                depth = reference[2]
                pt_3d = np.array([lms[66+i][0] * depth, lms[66+i][1] * depth, depth], np.float32)
                pt_3d = self.inverse_camera.dot(pt_3d)
                pt_3d = pt_3d - face_info.translation
                pt_3d = inverse_rotation.dot(pt_3d)
                pts_3d[66+i,:] = pt_3d[:]
        pts_3d[np.isnan(pts_3d).any(axis=1)] = np.array([0.,0.,0.], dtype=np.float32)

        pnp_error = np.sqrt(pnp_error / (2.0 * image_pts.shape[0]))
        if pnp_error > 300:
            face_info.fail_count += 1
            if face_info.fail_count > 5:
                # Something went wrong with adjusting the 3D model
                if not self.silent:
                    print(f"Detected anomaly when 3D fitting face {face_info.id}. Resetting.")
                face_info.face_3d = copy.copy(self.face_3d)
                face_info.rotation = None
                face_info.translation = np.array([0.0, 0.0, 0.0], np.float32)
                face_info.update_counts = np.zeros((66,2))
                face_info.update_contour()
        else:
            face_info.fail_count = 0

        euler = cv2.RQDecomp3x3(rmat)[0]
        return True, matrix_to_quaternion(rmat), euler, pnp_error, pts_3d, lms

    def preprocess(self, im, crop):
        x1, y1, x2, y2 = crop
        im = np.float32(im[y1:y2, x1:x2])
        im = cv2.resize(im, (self.res_i, self.res_i), interpolation=cv2.INTER_LINEAR) * self.std_res + self.mean_res
        im = np.expand_dims(im, 0)
        im = np.transpose(im, (0,3,1,2))
        return im

    def equalize(self, im):
        im_yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV)
        im_yuv[:,:,0] = cv2.equalizeHist(im_yuv[:,:,0])
        return cv2.cvtColor(im_yuv, cv2.COLOR_YUV2BGR)

    def corners_to_eye(self, corners, w, h, flip):
        ((cx1, cy1), (cx2, cy2)) = corners
        c1 = np.array([cx1, cy1])
        c2 = np.array([cx2, cy2])
        c2, a = compensate(c1, c2)
        center = (c1 + c2) / 2.0
        radius = np.linalg.norm(c1 - c2) / 2.0
        radius = np.array([radius * 1.4, radius * 1.2])
        upper_left = clamp_to_im(center - radius, w, h)
        lower_right = clamp_to_im(center + radius, w, h)
        return upper_left, lower_right, center, radius, c1, a

    def prepare_eye(self, frame, full_frame, lms, flip):
        outer_pt = tuple(lms[0])
        inner_pt = tuple(lms[1])
        h, w, _ = frame.shape
        (x1, y1), (x2, y2), center, radius, reference, a = self.corners_to_eye((outer_pt, inner_pt), w, h, flip)
        im = rotate_image(frame[:, :, ::], a, reference)
        im = im[int(y1):int(y2), int(x1):int(x2),:]
        if np.prod(im.shape) < 1:
            return None, None, None, None, None, None
        if flip:
            im = cv2.flip(im, 1)
        scale = np.array([(x2 - x1), (y2 - y1)]) / 32.
        im = cv2.resize(im, (32, 32), interpolation=cv2.INTER_LINEAR)
        #im = self.equalize(im)
        if self.debug_gaze:
            if not flip:
                full_frame[0:32, 0:32] = im
            else:
                full_frame[0:32, 32:64] = im
        im = im.astype(np.float32)[:,:,::-1] * self.std_32 + self.mean_32
        im = np.expand_dims(im, 0)
        im = np.transpose(im, (0,3,2,1))
        return im, x1, y1, scale, reference, a

    def extract_face(self, frame, lms):
        lms = np.array(lms)[:,0:2][:,::-1]
        x1, y1 = tuple(lms.min(0))
        x2, y2 = tuple(lms.max(0))
        radius_x = 1.2 * (x2 - x1) / 2.0
        radius_y = 1.2 * (y2 - y1) / 2.0
        radius = np.array((radius_x, radius_y))
        center = (np.array((x1, y1)) + np.array((x2, y2))) / 2.0
        w, h, _ = frame.shape
        x1, y1 = clamp_to_im(center - radius, h, w)
        x2, y2 = clamp_to_im(center + radius + 1, h, w)
        offset = np.array((x1, y1))
        lms = (lms[:, 0:2] - offset).astype(np.int)
        frame = frame[y1:y2, x1:x2]
        return frame, lms, offset

    def get_eye_state(self, frame, lms, single=False):
        if self.no_gaze:
            return [(1.0, 0.0, 0.0, 0.0), (1.0, 0.0, 0.0, 0.0)]
        lms = np.array(lms)
        e_x = [0,0]
        e_y = [0,0]
        scale = [0,0]
        reference = [None, None]
        angles = [0, 0]
        face_frame, lms, offset = self.extract_face(frame, lms)
        (right_eye, e_x[0], e_y[0], scale[0], reference[0], angles[0]) = self.prepare_eye(face_frame, frame, np.array([lms[36,0:2], lms[39,0:2]]), False)
        (left_eye, e_x[1], e_y[1], scale[1], reference[1], angles[1]) = self.prepare_eye(face_frame, frame, np.array([lms[42,0:2], lms[45,0:2]]), True)
        if right_eye is None or left_eye is None:
            return [(1.0, 0.0, 0.0, 0.0), (1.0, 0.0, 0.0, 0.0)]
        both_eyes = np.concatenate((right_eye, left_eye))
        results = None
        if single:
            results = self.gaze_model_single.run([], {self.input_name: both_eyes})
        else:
            results = self.gaze_model.run([], {self.input_name: both_eyes})
        open = [0, 0]
        open[0] = 1#results[1][0].argmax()
        open[1] = 1#results[1][1].argmax()
        results = np.array(results[0])

        eye_state = []
        for i in range(2):
            m = int(results[i][0].argmax())
            x = m // 8
            y = m % 8
            conf = float(results[i][0][x,y])

            off_x = 32.0 * logit(results[i][1][x, y], 8.0)
            off_y = 32.0 * logit(results[i][2][x, y], 8.0)
            if i == 1:
                eye_x = 32.0 * float(x) / 8.0 + off_x
            else:
                eye_x = 32.0 * float(x) / 8.0 + off_x
            eye_y = 32.0 * float(y) / 8.0 + off_y

            if self.debug_gaze:
                if i == 0:
                    frame[int(eye_y), int(eye_x)] = (0, 0, 255)
                    frame[int(eye_y+1), int(eye_x)] = (0, 0, 255)
                    frame[int(eye_y+1), int(eye_x+1)] = (0, 0, 255)
                    frame[int(eye_y), int(eye_x+1)] = (0, 0, 255)
                else:
                    frame[int(eye_y), 32+int(eye_x)] = (0, 0, 255)
                    frame[int(eye_y+1), 32+int(eye_x)] = (0, 0, 255)
                    frame[int(eye_y+1), 32+int(eye_x+1)] = (0, 0, 255)
                    frame[int(eye_y), 32+int(eye_x+1)] = (0, 0, 255)

            if i == 0:
                eye_x = e_x[i] + scale[i][0] * eye_x
            else:
                eye_x = e_x[i] + scale[i][0] * (32. - eye_x)
            eye_y = e_y[i] + scale[i][1] * eye_y
            eye_x, eye_y = rotate(reference[i], (eye_x, eye_y), -angles[i])

            eye_x = eye_x + offset[0]
            eye_y = eye_y + offset[1]
            eye_state.append([open[i], eye_y, eye_x, conf])

        eye_state = np.array(eye_state)
        eye_state[np.isnan(eye_state).any(axis=1)] = np.array([1.,0.,0.,0.], dtype=np.float32)
        return eye_state

    def assign_face_info(self, results):
        if self.max_faces == 1 and len(results) == 1:
            conf, (lms, eye_state), conf_adjust = results[0]
            self.face_info[0].update((conf - conf_adjust, (lms, eye_state)), np.array(lms)[:, 0:2].mean(0), self.frame_count)
            return
        result_coords = []
        adjusted_results = []
        for conf, (lms, eye_state), conf_adjust in results:
            adjusted_results.append((conf - conf_adjust, (lms, eye_state)))
            result_coords.append(np.array(lms)[:, 0:2].mean(0))
        results = adjusted_results
        candidates = [[]] * self.max_faces
        max_dist = 2 * np.linalg.norm(np.array([self.width, self.height]))
        for i, face_info in enumerate(self.face_info):
            for j, coord in enumerate(result_coords):
                if face_info.coord is None:
                    candidates[i].append((max_dist, i, j))
                else:
                    candidates[i].append((np.linalg.norm(face_info.coord - coord), i, j))
        for i, candidate in enumerate(candidates):
            candidates[i] = sorted(candidate)
        found = 0
        target = len(results)
        used_results = {}
        used_faces = {}
        while found < target:
            min_list = min(candidates)
            candidate = min_list.pop(0)
            face_idx = candidate[1]
            result_idx = candidate[2]
            if not result_idx in used_results and not face_idx in used_faces:
                self.face_info[face_idx].update(results[result_idx], result_coords[result_idx], self.frame_count)
                min_list.clear()
                used_results[result_idx] = True
                used_faces[face_idx] = True
                found += 1
            if len(min_list) == 0:
                min_list.append((2 * max_dist, face_idx, result_idx))
        for face_info in self.face_info:
            if face_info.frame_count != self.frame_count:
                face_info.update(None, None, self.frame_count)

    def predict(self, frame, additional_faces=[]):
        self.frame_count += 1
        start = time.perf_counter()
        im = frame

        duration_fd = 0.0
        duration_pp = 0.0
        duration_model = 0.0
        duration_pnp = 0.0

        new_faces = []
        new_faces.extend(self.faces)
        bonus_cutoff = len(self.faces)
        new_faces.extend(additional_faces)
        self.wait_count += 1
        if self.detected == 0:
            start_fd = time.perf_counter()
            if self.use_retinaface > 0 or self.try_hard:
                retinaface_detections = self.retinaface.detect_retina(frame)
                new_faces.extend(retinaface_detections)
            if self.use_retinaface == 0 or self.try_hard:
                new_faces.extend(self.detect_faces(frame))
            if self.try_hard:
                new_faces.extend([(0, 0, self.width, self.height)])
            duration_fd = 1000 * (time.perf_counter() - start_fd)
            self.wait_count = 0
        elif self.detected < self.max_faces:
            if self.use_retinaface > 0:
                new_faces.extend(self.retinaface_scan.get_results())
            if self.wait_count >= self.scan_every:
                if self.use_retinaface > 0:
                    self.retinaface_scan.background_detect(frame)
                else:
                    start_fd = time.perf_counter()
                    new_faces.extend(self.detect_faces(frame))
                    duration_fd = 1000 * (time.perf_counter() - start_fd)
                    self.wait_count = 0
        else:
            self.wait_count = 0

        if len(new_faces) < 1:
            duration = (time.perf_counter() - start) * 1000
            if not self.silent:
                print(f"Took {duration:.2f}ms")
            return []

        crops = []
        crop_info = []
        num_crops = 0
        for j, (x,y,w,h) in enumerate(new_faces):
            crop_x1 = x - int(w * 0.1)
            crop_y1 = y - int(h * 0.125)
            crop_x2 = x + w + int(w * 0.1)
            crop_y2 = y + h + int(h * 0.125)

            crop_x1, crop_y1 = clamp_to_im((crop_x1, crop_y1), self.width, self.height)
            crop_x2, crop_y2 = clamp_to_im((crop_x2, crop_y2), self.width, self.height)

            scale_x = float(crop_x2 - crop_x1) / self.res
            scale_y = float(crop_y2 - crop_y1) / self.res

            if crop_x2 - crop_x1 < 4 or crop_y2 - crop_y1 < 4:
                continue

            start_pp = time.perf_counter()
            crop = self.preprocess(im, (crop_x1, crop_y1, crop_x2, crop_y2))
            duration_pp += 1000 * (time.perf_counter() - start_pp)
            crops.append(crop)
            crop_info.append((crop_x1, crop_y1, scale_x, scale_y, 0.0 if j >= bonus_cutoff else 0.1))
            num_crops += 1

        start_model = time.perf_counter()
        outputs = {}
        if num_crops == 1:
            output = self.session.run([], {self.input_name: crops[0]})[0]
            conf, lms = self.landmarks(output[0], crop_info[0])
            if conf > self.threshold:
                try:
                    eye_state = self.get_eye_state(frame, lms)
                except:
                    eye_state = [(1.0, 0.0, 0.0, 0.0), (1.0, 0.0, 0.0, 0.0)]
                outputs[crop_info[0]] = (conf, (lms, eye_state), 0)
        else:
            started = 0
            results = queue.Queue()
            for i in range(min(num_crops, self.max_workers)):
                thread = threading.Thread(target=worker_thread, args=(self.sessions[started], frame, crops[started], crop_info[started], results, self.input_name, started, self))
                started += 1
                thread.start()
            returned = 0
            while returned < num_crops:
                result = results.get(True)
                if len(result) != 1:
                    session, conf, lms, sample_crop_info, idx = result
                    outputs[sample_crop_info] = (conf, lms, idx)
                else:
                    session = result[0]
                returned += 1
                if started < num_crops:
                    thread = threading.Thread(target=worker_thread, args=(session, frame, crops[started], crop_info[started], results, self.input_name, started, self))
                    started += 1
                    thread.start()

        actual_faces = []
        good_crops = []
        for crop in crop_info:
            if crop not in outputs:
                continue
            conf, lms, i = outputs[crop]
            x1, y1, _ = lms[0].min(0)
            x2, y2, _ = lms[0].max(0)
            bb = (x1, y1, x2 - x1, y2 - y1)
            outputs[crop] = (conf, lms, i, bb)
            actual_faces.append(bb)
            good_crops.append(crop)
        groups = group_rects(actual_faces)

        best_results = {}
        for crop in good_crops:
            conf, lms, i, bb = outputs[crop]
            if conf < self.threshold:
                continue;
            group_id = groups[str(bb)][0]
            if not group_id in best_results:
                best_results[group_id] = [-1, [], 0]
            if conf > self.threshold and best_results[group_id][0] < conf + crop[4]:
                best_results[group_id][0] = conf + crop[4]
                best_results[group_id][1] = lms
                best_results[group_id][2] = crop[4]

        sorted_results = sorted(best_results.values(), key=lambda x: x[0], reverse=True)[:self.max_faces]
        self.assign_face_info(sorted_results)
        duration_model = 1000 * (time.perf_counter() - start_model)
        
        results = []
        detected = []
        start_pnp = time.perf_counter()
        for face_info in self.face_info:
            results.append(face_info)
            if face_info.alive and face_info.conf > self.threshold:
                face_info.success, face_info.quaternion, face_info.euler, face_info.pnp_error, face_info.pts_3d, face_info.lms = self.estimate_depth(face_info)
                face_info.adjust_3d()
                lms = face_info.lms[:, 0:2]
                x1, y1 = tuple(lms[0:66].min(0))
                x2, y2 = tuple(lms[0:66].max(0))
                bbox = (y1, x1, y2 - y1, x2 - x1)
                face_info.bbox = bbox
                detected.append(bbox)
        duration_pnp += 1000 * (time.perf_counter() - start_pnp)

        if len(detected) > 0:
            self.detected = len(detected)
            self.faces = detected
            self.discard = 0
        else:
            self.detected = 0
            self.discard += 1
            if self.discard > self.discard_after:
                self.faces = []
            else:
                if self.bbox_growth > 0:
                    faces = []
                    for (x,y,w,h) in self.faces:
                        x -= w * self.bbox_growth
                        y -= h * self.bbox_growth
                        w += 2 * w * self.bbox_growth
                        h += 2 * h * self.bbox_growth
                        faces.append((x,y,w,h))
                    self.faces = faces
        self.faces = [x for x in self.faces if not np.isnan(np.array(x)).any()]
        self.detected = len(self.faces)

        duration = (time.perf_counter() - start) * 1000
        if not self.silent:
            print(f"Took {duration:.2f}ms (detect: {duration_fd:.2f}ms, crop: {duration_pp:.2f}ms, track: {duration_model:.2f}ms, 3D points: {duration_pnp:.2f}ms)")

        results = sorted(results, key=lambda x: x.id)

        return results